| 研究生: |
張雅筑 Chang, Ya-Chu |
|---|---|
| 論文名稱: |
超音速燃燒衝壓引擎下游壓力擾動對隔離段燃燒室震波串之影響 Response of Shock Train in Isolator-Combustor to Downstream Pressure Oscillation of a Scramjet Engine |
| 指導教授: |
袁曉峰
Yuan, Tony |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 超燃衝壓引擎內流場 、超燃衝壓引擎隔離段燃燒室 、震波串 、震波動態 、流場擾動 |
| 外文關鍵詞: | scramjet internal flow, scramjet isolator-combustor, shock train, shock dynamics, flow oscillation |
| ORCID: | 0000-0002-3259-8006 |
| 相關次數: | 點閱:100 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究經由三維冷流場數值模擬探討超音速燃燒衝壓引擎內流場為馬赫2.2時,震波串對下游擾動之響應。計算區域包含了隔離段與燃燒室,並採用了k–ω SST紊流模式以改善傳統雙方程紊流模式在逆向壓力邊界層問題往往過於高估其剪應力之缺點。流道出口邊界條件設置為一給定壓力,以模擬燃燒過後產生之高壓,並且加上從188到1128赫茲之週期性壓力振盪頻率以模擬因燃燒不穩定產生之流場振盪現象。結果顯示下游的壓力擾動會透過分離的邊界層傳遞至上游,而分離邊界層引發了分離震波與分離泡,超音速中心流因而產生X型震波以調節中心流場與分離泡之間的壓力差,並且形成了一系列的震波串。震波串隨著下游擾動而產生位移,當擾動頻率較小時,震波串位移較大,並且發現震波串位移之加速度與分離泡內之壓力變化率相關,當下游擾動頻率增加時,分離泡壓力變化率隨之增加,進而產生較大之震波串負向加速度,使震波串往隔離段入口移動,在低頻率時位移較大是因為其振盪週期較大。然而當下游擾動壓力大於1128赫茲時,分離泡內壓力不再隨著擾動頻率增加而增加,使得震波串趨於穩定。當下游振盪振幅減小時,震波串也會較為穩定,因分離泡內壓力變化率較小,產生之震波串負向加速度也較小。通過導納函數分析,震波串可視為一低通濾波器與阻尼器,將隔離段與燃燒室之間的振盪減幅直至消散。
The response of Mach 2.2 internal flowfield to downstream pressure oscillation in a scramjet engine is studied numerically. The physical domain includes both the isolator and combustor. The theoretical formulation is based on the full conservation equations of three-dimensional non-reacting flow. Turbulence closure is achieved using the k–ω SST model to improve the prediction of shear stress under adverse pressure gradient. As part of the downstream boundary condition, the high pressure with periodic oscillations in the frequency range of 188-1128 Hz are imposed to mimic flow oscillations caused by combustion instability. The downstream disturbance is found to influence the supersonic core flow in the isolator through separated boundary layers. A shock train is initiated from corner separation shocks, and X-type shocks take place to adjust the pressure between the core flow and the separation bubble on the wall. When the frequency of back pressure oscillation is lower, the shock front fluctuates over a larger displacement. The shock front acceleration is correlated to the rate of change of pressure in the separation bubble and increases in negative direction with increasing back pressure frequency, leading the shock train to move toward inlet. The shock train has larger displacement in low-frequency since the longer period of oscillation. However, when the oscillation increases to 1128 Hz, the rate of change of pressure in the separation bubble decreases, resulting in a more stable shock front. When the oscillation amplitude is smaller, the shock front becomes stable because the pressure variation and the shock acceleration magnitude are small. From the admittance function analysis, the shock train acts as a low-pass filter and damps flow oscillation in the isolator-combustor.
1. Alford, J.S. and Auyer, E.L. (1954) Turbojet-Engine Design Problems for Supersonic Flight. SAE Transactions, 411-415.
2. Beloki Perurena, J., Asma, C., Theunissen, R. and Chazot, O. (2009) Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow. Exp. Fluids, 46 (3), 403-417.
3. Ben-Yakar, A., Mungal, M. and Hanson, R. (2006) Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids, 18 (2), 026101.
4. Billig, F.S. (1993) Research on supersonic combustion. J. Propul. Power, 9 (4), 499-514.
5. Boussinesq, J. (1897) Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section. Vol. 1. Paris:Gauthier-Villars et Fils.
6. Boyce, R., Takahashi, M. and Stalker, R. (2005) Mass spectrometric measurements of driver gas arrival in the T4 free-piston shock-tunnel. Shock Waves, 14 (5), 371-378.
7. Bruce, P. and Babinsky, H. (2008) Unsteady shock wave dynamics. J. Fluid Mech., 603, 463-473.
8. Bruce, P. and Babinsky, H. (2010) An experimental study of transonic shock/boundary layer interactions subject to downstream pressure perturbations. Aerosp. Sci. Technol., 14 (2), 134-142.
9. Cabell, K., Hass, N., Storch, A. and Gruber, M. (2011) HIFiRE direct-connect rig (HDCR) phase I scramjet test results from the NASA Langley arc-heated scramjet test facility. AIAA Paper 2011-2248.
10. Carroll, B.F. and Dutton, J.C. (1990) Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts. J. Propul. Power, 6 (2), 186-193.
11. Choi, J.Y., Ma, F. and Yang, V. (2005) Combustion oscillations in a scramjet engine combustor with transverse fuel injection. P. Combust. Inst., 30 (2), 2851-2858.
12. Cox-Stouffer, S.K. and Hagenmaier, M.A. (2001) The effect of aspect ratio on isolator performance. AIAA Paper 2001-519.
13. Culick, F. and Rogers, T. (1983) The response of normal shocks in diffusers. AIAA J., 21 (10), 1382-1390.
14. Curran, E., Heiser, W. and Pratt, D. (1996) Fluid phenomena in scramjet combustion systems. Annu. Rev. Fluid Mech., 28 (1), 323-360.
15. Curran, E.T. (2001) Scramjet engines: the first forty years. J. Propul. Power, 17 (6), 1138-1148.
16. Dolling, D. and Murphy, M. (1983) Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J., 21 (12), 1628-1634.
17. Dussauge, J.P., Dupont, P. and Debiève, J.F. (2006) Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol., 10 (2), 85-91.
18. Erengil, M.E. and Dolling, D.S. (1991) Unsteady wave structure near separation in a Mach 5 compression rampinteraction. AIAA J., 29 (5), 728-735.
19. Frost, M.A., Gangurde, D.Y., Paull, A. and Mee, D.J. (2009) Boundary-layer separation due to combustion-induced pressure rise in a supersonic flow. AIAA J., 47 (4), 1050-1053.
20. Geerts, J.S. and Yu, K.H. (2016) Shock train/boundary-layer interaction in rectangular isolators. AIAA J., 54 (11), 3450-3464.
21. Hass, N., Cabell, K.F. and Storch, A.M. (2010) HIFiRE direct-connect rig (HDCR) phase I ground test results from the NASA Langley arc-heated scramjet test facility. In: JANNAF 43rd Combustion, 31st Airbreathing Joint Meeting. La Jolla, CA, pp. 1-24.
22. Heiser, W.H., Pratt, D.T., Daley, D.H. and Mehta, U.B. (1994) Hypersonic airbreathing propulsion. Washington, D.C.:AIAA.
23. Ikui, T., Matsuo, K. and Nagai, M. (1974) The mechanism of pseudo-shock waves. Bull. JSME, 17 (108), 731-739.
24. Johnson, D.A. and King, L. (1985) A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA J., 23 (11), 1684-1692.
25. Korkegi, R. (1973) A simple correlation for incipient-turbulent boundary-layer separation due to a skewed shock wave. AIAA J., 11 (11), 1578-1579.
26. Lander, H. and Nixon, A. (1971) Endothermic fuels for hypersonic vehicles. J. Aircraft, 8 (4), 200-207.
27. Lewis, M.J. (2001) Significance of fuel selection for hypersonic vehicle range. J. Propul. Power, 17 (6), 1214-1221.
28. Li, J. (2009) Ignition transient in an ethylene fueled scramjet engine with air throttling. (PhD dissertation) The Pennsylvania State University.
29. Li, J., Zhang, L., Choi, J.Y., Yang, V. and Lin, K.C. (2014) Ignition transients in a scramjet engine with air throttling part 1: Nonreacting flow. J. Propul. Power, 30 (2), 438-448.
30. Li, J., Zhang, L., Choi, J.Y., Yang, V. and Lin, K.-C. (2015) Ignition transients in a scramjet engine with air throttling part II: reacting flow. J. Propul. Power, 31 (1), 79-88.
31. Lin, K.C., Tam, C.J., Jackson, K., Eklund, D. and Jackson, T. (2006) Characterization of shock train structures inside constant-area isolators of model scramjet combustors. AIAA Paper 2006-816.
32. Lin, K.C., Jackson, K., Behdadnia, R., Jackson, T.A., Ma, F. and Yang, V. (2010) Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder. J. Propul. Power, 26 (6), 1161-1170.
33. Ma, F., Li, J., Yang, V., Lin, K.C. and Jackson, T. (2005) Thermoacoustic flow instability in a scramjet combustor. AIAA Paper 2005-3824.
34. Masuya, G., Komuro, T., Murakami, A., Shinozaki, N., Nakamura, A., Murayamall, M. and Ohwaki, K. (1995) Ignition and combustion performance of scramjet combustors with fuel injection struts. J. Propul. Power, 11 (2), 301-307.
35. Matsuo, K., Miyazato, Y. and Kim, H.D. (1999) Shock train and pseudo-shock phenomena in internal gas flows. Prog. Aerosp. Sci., 35 (1), 33-100.
36. Mcclinton, C., Hunt, J., Ricketts, R., Reukauf, P. and Peddie, C. (1999) Airbreathing hypersonic technology vision vehicles and development dreams. AIAA Paper 1999-4978.
37. Mcdaniel, K. and Edwards, J. (2001) Three-dimensional simulation of thermal choking in a model scramjet combustor. AIAA Paper 2001-382.
38. Menter, F.R. (1992) Performance of popular turbulence model for attached and separated adverse pressure gradient flows. AIAA J., 30 (8), 2066-2072.
39. Menter, F.R. (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 32 (8), 1598-1605.
40. Morgan, B., Duraisamy, K. and Lele, S.K. (2014) Large-eddy simulations of a normal shock train in a constant-area isolator. AIAA J., 52 (3), 539-558.
41. Nedungadi, A. and Van Wie, D. (2004) Understanding isolator performance operating in the separation-shock mode. AIAA Paper 2004-3832.
42. O’byrne, S., Doolan, M., Olsen, S. and Houwing, A. (2000) Analysis of transient thermal choking processes in a model scramjet engine. J. Propul. Power, 16 (5), 808-814.
43. Oh, J.Y., Ma, F., Hsieh, S.-Y. and Yang, V. (2005) Interactions between shock and acoustic waves in a supersonic inlet diffuser. J. Propul. Power, 21 (3), 486-495.
44. Oka, T., Ono, D. and Miyazato, Y. (2014) Study of shock trains and pseudo-shock waves in constant area ducts. AIAA Paper 2014-0949.
45. Ouyang, H., Liu, W. and Sun, M. (2015) The large-amplitude combustion oscillation in a single-side expansion scramjet combustor. Acta Astronaut., 117, 90-98.
46. Ouyang, H., Liu, W. and Sun, M. (2016) Parametric study of combustion oscillation in a single-side expansion scramjet combustor. Acta Astronaut., 127, 603-613.
47. Papamoschou, D. and Roshko, A. (1988) The compressible turbulent shear layer: an experimental study. J. Fluid Mech., 197, 453-477.
48. Paull, A. and Stalker, R. (1998) Scramjet testing in the T4 impulse facility. AIAA Paper 1998-1533.
49. Penzin, V. (1995) Experimental Investigation of Supersonic Flows with Separated Regions in Ducts. Central Aerodynamics Inst. Moscow (Russia).
50. Pratt, D. and Heiser, W. (1993) Isolator-combustor interaction in a dual-mode scramjet engine. AIAA Paper 1993-358.
51. Reid, R.C., Prausnitz, J.M. and Poling, B.E. (1987) The properties of gases and liquids. 4th ed. New York:McGraw-Hill.
52. Reynolds, O. (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. A., (186), 123-164.
53. Thomas, F., Putnam, C. and Chu, H. (1994) On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions. Exp. Fluids, 18 (1), 69-81.
54. Tishkoff, J., Drummond, J., Edwards, T., Nejad, A., Tishkoff, J., Drummond, J., Edwards, T. and Nejad, A. (1997) Future directions of supersonic combustion research-Air Force/NASA workshop on supersonic combustion. In: 35th Aerospace Sciences Meeting and Exhibit. p. 1017.
55. Voland, R.T., Huebner, L.D. and Mcclinton, C.R. (2006) X-43A hypersonic vehicle technology development. Acta Astronaut., 59 (1-5), 181-191.
56. Wagner, J., Yuceil, K., Valdivia, A., Clemens, N. and Dolling, D. (2009) Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow. AIAA J., 47 (6), 1528-1542.
57. Waltrup, P. and Billig, F. (1973) Structure of shock waves in cylindrical ducts. AIAA J., 11 (10), 1404-1408.
58. Wang, C., Xue, L. and Tian, X. (2017) Experimental characteristics of oblique shock train upstream propagation. Chinese J. Aeronaut, 30 (2), 663-676.
59. Wilcox, D.C. (1998) Turbulence modeling for CFD. Vol. 2. DCW industries La Canada, CA.
60. Yang, V. and Culick, F. (1985) Analysis of unsteady inviscid diffuser flow with a shock wave. J. Propul. Power, 1 (3), 222-228.