簡易檢索 / 詳目顯示

研究生: 陳力魁
Chen, Li-Kuei
論文名稱: 可互溶磁性流體在靜止及旋轉之Hele-Shaw Cell 中的不穩定現象研究
Study on Flow Instabilities on the Miscible Magnetic Fluid Interface in a Hele-Shaw Cell –Stationary and Rotating
指導教授: 溫志湧
Wen, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 95
中文關鍵詞: Hele-Shaw Cell可互溶界面複雜指狀化不穩定現象離心力
外文關鍵詞: Hele-Shaw Cell, miscible ferrofluid, labyrinthine fingering instabilities, centrifugal force
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以理論分析與實驗方法來探討Hele-Shaw Cell中磁性流體與柴油間可互溶界面的不穩性問題。
    本研究中理論與實驗皆分為兩部分,第一部分為垂直磁場下磁性流體的複雜指狀化現象,實驗中觀察到磁性流體與柴油間所形成的可互溶界面,在通以垂直磁場的情況下會有指狀化不穩定現象發生,而本研究中針對不同上升速率的磁場強度以及不同磁場強度的預磁情況下觀察磁性流體界面周長在20秒內的成長並與理論作結合,實驗結果顯示磁性流體界面周長的成長並非線性而是分作兩階段,第一個階段為不穩定現象發生前因界面擴散現象造成的線性成長,第二階段為磁性流體指狀化不穩定現象發生後其界面周長呈現exponential rise to max的成長,在此階段磁性流體可互溶界面周長一開始會因為指狀物的產生而快速成長,但隨著界面濃度越來越低其成長速度會趨於平緩。而我們取指狀物生成後初期時其界面周長隨時間的變化為初始成長率α,並與我們定義之無因次參數magnetic Peclect number, Pe’關係作圖,其結果為兩者呈線性關係,而在預磁情況下α會與我們所定義之無因次磁場√((3μ_0)/ρχ) M呈線性關係。
    第二部分為旋轉Hele-Shaw Cell實驗,我們首先以因次分析方法得到了磁力、黏滯力、離心力、科氏力間的大小量級關係,並依此為基準設計實驗。而實驗結果發現當轉速越快離心力越大時,磁性流體與柴油間的的可互溶界面越不穩定,但是實驗結果發現在垂直磁場越大時其界面反而越穩定越不容易甩出,針對這個現象我們利用理論分析與實驗結果做比對,歸納出其主要原因為:實驗所使用赫姆霍茲線圈並非完全均勻磁場,其磁場在r方向的梯度變化產生了與離心力相反的力,進而導致磁性流體的界面在磁場越大時越穩定。

    In this thesis, the interfacial instabilities of miscible magnetic fluids and diesel in a Hele-Shaw cell are studied theoretically and experimentally.
    Two subjects are studied. In the first part, the labyrinthine fingering phenomena of the magnetic fluids on a perpendicular magnetic field is investigated. Experimental images clearly show unstable fingerings appearing on the interface of miscible magnetic fluids and diesel under a uniform perpendicular magnetic field. The growth of the interface length in the initial 20 seconds is analyzed from the experimental images, under different incremental rates of magnetic fields and different magnitudes of pre-magnetization. The experimental results are compared with the theoretical predictions. Experimental results show that the growth of the interface length is nonlinear with time and can be divided into two stages: the initial diffusion-dominating stage and the magnetic-force-dominating stage. The in initial growth rate of the interface length α is calculated at the ensuing time when fingers occur. The initial growth rate α is shown correlated linearly with (1) the dimensionless magnetic Peclect number, Pe’, considering the effects of different incremental rates of magnetic fields, and (2) the dimensionless magnetic field √((3μ_0)/ρχ) M in the pre-magnetization cases. Both Pe’ and √((3μ_0)/ρχ) M are derived from our theoretical analyses.
    The second subject of this thesis focuses on the stability analyses of the miscible magnetic fluid interface in a rotating Hele-Shaw cell. First, the dimensional analysis is performed to get the dimensionless groups of parameters, which help to understand the orders of magnitude between magnetic force, viscous force, centrifugal force, and Coriolis force, and design the experiments matrix. Experimental results show that the interface of miscible magnetic fluids and diesel appears more unstable when the rotating speed and the consequent centrifugal force increase. Contrarily, the experimental results show that the interface will be more stable when the magnitude of the perpendicular magnetic field increases, The theoretical analyses show that the slight non-uniformity of the magnetic field generated by the pair of Helmholtz coils at a certain distance from their centerline results in a negative magnetic field gradient which generates an opposite force to the centrifugal force, and therefore stabilizes the interface therefore.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 ix 符號表 xiv 第一章 序論 1 1.1介紹 1 1.1.1磁性流體的介紹 1 1.1.2 Hele-Shaw Cell 的介紹 2 1.2 文獻回顧 3 1.2.1 指狀化不穩定現象(Fingering Instability) 3 1.2.2 磁流體指狀化不穩定現象(Fingering Instability) 4 1.2.3 可互溶磁流體不穩定介面與其成長率研究 10 1.2.4旋轉Hele-Shaw Cell 11 1.3研究目的 16 第二章 研究方法 17 2.1理論分析 17 2.1.1 垂直磁場下Hele-Shaw Cell 流場 17 2.1.2旋轉Hele-Shaw Cell流場因次分析 20 2.2 實驗方法 35 2.2.1實驗流體選用 35 2.2.2實驗流程 35 2.2.2.1 非旋轉實驗 36 2.2.2.1旋轉實驗 36 2.2.3 實驗設備與設計概念 37 2.2.4觀察流場之實驗設備 39 2.2.4.1 非旋轉實驗 39 2.2.4.2 旋轉實驗 40 2.2.5可程式化電源供應器 40 2.2.6 磁場校正工具 41 2.2.7 毛細管黏度計 42 2.2.8 Matlab影像分析 43 第三章 結果與討論 44 3.1垂直外加磁場對Hele-Shaw Cell中磁性流體可互溶界面的影響 44 3.1.1 不同上升速率的外加磁場對磁性流體可互溶界面的影響 44 3.1.1.1 定性比較 44 3.1.1.2 定量分析 50 3.1.1.3 初始成長率α與Pe’關係 54 3.1.2 固定磁場下不同外加磁場大小對磁性流體的影響 55 3.1.2.1 定性比較 55 3.1.2.2 定量分析 59 3.1.2.3 初始成長率α與無因次磁場關係 62 3.2 旋轉Hele-Shaw Cell實驗結果 63 3.2.1 無磁場下旋轉Hele-Shaw Cell中磁流體的不穩定現象 63 3.2.2垂直磁場下旋轉Hele-Shaw Cell中磁流體的不穩定現象 69 3.2.3 高磁場下旋轉Hele-Shaw Cell的不穩定現象 72 第四章 結論 80 4.1 結論 80 參考文獻 82 附錄一 86

    [1] Lord Rayleigh(1900), Scientific Papers II , p. 200.
    [2]G. I. Taylor(1950), “The Rayleigh-Taylor Instability,” Proc. R. Soc. London, Ser. A 201, 192.
    [3]S. Hill(1952), “Channeling in Packed Colums,” Chemical Engineering Science, Vol. 1, pp. 247-253.
    [4]P. Saffman and G. Taylor (1958), “The Penetration of a Fluid Into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid, ”Proceedings of Royal Society of London Series A, Vol. 245, pp. 312-329.
    [5]L. Patterson (1981), “Radial Fingering in Hele-Shaw Cell,” Journal of Fluid Mechanics, Vol. 113, pp. 513-529.
    [6]D. Korteweg(1901), ”Sur La Forme Que Prennent Les Equations Du Mouvement Des Fluids Si L’on Tient Compte Des Forces Capillaries Causes Par Des Variations De Densite,” Arch. Neel. Sci. Ex. Nat. (II) 6.
    [7]A. Cebers and M. M. Mayorov(1980), “Magnetostatic Instabilities in Plane Layers of Magnetizable Fluids,” Magnetohydrodynamics (N.Y.) 16, 21.
    [8]A. Cebers and M. M. Mayorov(1980), “Structures of Interface a Bubble and Magnetic Fluid in a Field,” Magnetohydrodynamics (N.Y.) 16, 231.
    [9]A. Cebers(1997), “Stabilities of Diffusion Fronts of Magnetic Particles in Porous Media (Hele-Shaw Cell) Under the Action of External Magnetic Field,” Magnetohydrodynamics, VOl. 33, No. 1, pp. 48-55.
    [10]M. Lgonin and A. Cebers (2003), “Labyrinthine Instability of Miscible Magnetic Fluids,” Physics of Fluids, Vol. 15, No. 6, pp. 1734-1744.
    [11]S. A. Langer, R. E. Goldstein, and D. P. Jackson(1992), ‘‘Dynamics of Labyrinthinepattern Formation in Magnetic Fluids,’’ Phys. Rev. A 46, 4894.
    [12]D. Jackson, R. Goldstein and A. Cebers(1994), “Hydrodynamics of Fingering Instablilities in Droplet Fluids,” Physical Review E, Vol. 50, pp. 298-309.
    [13] C. Flament, G. Pacitto, J. Bacri, I. Drikis, and A. Cebers(1998), "Viscous Fingering in a Magnetic Fluid. I. Radial Hele-Shaw flow," Phys. Fluids 10, 2464 .
    [14]C.Y. Chen, and C.Y. Wen(2002), “Numerical Simulations of Miscible Magnetic Flows in a Hele-Shaw Cell, Part I. Radial Flows,” Journal of Magnetism and Magnetic Matericals, Vol. 252, No. 296, pp. 296-298,Nov.
    [15]C.Y. Wen, C.Y. Chen, D.C. Kuan and S.Y. Wu(2007), “Labyrinthine Instability of a Miscible Magnetic Drop,” Journal of Magnetism and Magnetic Matericals, Vol. 310, pp. e1017-e1019.
    [16]C.Y. Chen(2003), “Numerical Simulation of Fingering Instabilities In Miscible Magnetic Fluids in Hele-Shaw Cell and The Effects of Korteweg Stresses,” Physics of Fluids, 15, 4.
    [17]H. Hu and D. Joseph(1992), “Miscible Displacement in a Hele-Shaw Cell,” Zeitschrift für Angewandte Mathematik und Physik, Vol. 43, pp. 626-644.
    [18]I. Drikis, A. Cebers(1999), “Free Boundary Problems: Theory and Applications,” Chapman and Hall/CRC .
    [19]K. Mccloud, J. Maher (1995), “Experimental Perturbation to Saffman- Taylor Flow,” Physics Report 260, pp. 139-185.
    [20] Qiang Li, Yimin Xuan , Jian Wang(2004) , “Experimental Investigations on Transport Properties of Magnetic Fluids,” Experimental Thermal and Fluid Science .
    [21] Stefan Odenbach(2004), “Recent Progress in Magnetic Fluid Research,” Journal of Physics : Condensed Matter.
    [22] C.Y. Wen, C.Y. Chen, and D.C. Kuan(2007), “Experimental Studies of Labyrinthine Instabilities of Miscible Ferrofluids in a Hele-Shaw Cell,” Physics of Fluids, Vol. 19, pp. 084101-1 - 084101-8.
    [23]林佳宗(2009), “不同增強速率的外加磁場及旋轉對可互溶磁性流體複雜指狀化不穩定現象之研究”,國立成功大學航太所碩士論文.
    [24]Leonard W. Schwartz(1989), “Instability and Fingering in a Rotating Hele–Shaw Cell or Porous Medium,” Phys. Fluids A 1, 167 .
    [25]S. L. Waters and L. J. Cumming(2005), “Coriolis Effects in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 17, pp. 048101-1 - 048101-4.
    [26]Ll. Carrillo, F. Magdaleno, J. Casademunt, and J. Ortín(1996), “Experiments in a Rotating Hele-Shaw Cell,” Physical Review E, Vol. 54, pp. 6260-6267.
    [27]Ll. Carrillo, J. Soriano, and J. Ortín(1998), “Radial Displacement of a Fluid Annulus in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 11, No. 4, pp. 778-785.
    [28]Ll. Carrillo, J. Soriano, and J. Ortín(2000), “Interfacial instability of a Fluid Annulus in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 12, No. 7, pp. 1685-1698.
    [29]E. Alvarez-Lacalle, J. Ortín, and J. Casademunt(2000), “Low Viscosity Contrast Fingering in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 16, No. 4, pp. 908-924.
    [30]J. A. Miranda(2000), ”Rotating Hele-Shaw Cells with Ferrofluids,” Physical Review E, Vol. 62, No. 2, pp. 2985-2988.
    [31]D. P. Jackson and J. A. Miranda(2003), “Controlling Fingering Instabilities in Rotating Ferrofluids,” Physical Review E, Vol. 67, pp.017301-1 – 017301-4.
    [32] C.Y. Chen and S.W. Wang(2002), “Interfacial Instabilities of Miscible Fluids in a Rotating Hele–Shaw Cell,” Fluid Dynamics Research 30, pp.315-330.
    [33] C.Y. Chen and H. J. Wu(2005), “Numerical Simulations of Interfacial Instabilities on a Rotating Miscible Magnetic Droplet with Effects of Korteweg Stresses,” Physics of Fluids 17,.
    [34] C.Y Wen and J.Z. Lin(2011), “Effects of Sweep Rates of External Magnetic Field on the Labyrinthine Instabilities of Miscible Magnetic Fluids, ” Journal of Magnetism and Magnetic Materials , Vol. 323 pp.1258-1262.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE