簡易檢索 / 詳目顯示

研究生: 陳怡安
Chen, Yi-An
論文名稱: 探討平穩期雙極症患者之腸道菌相組成
Exploration of gut microbiota composition in euthymic bipolar patients
指導教授: 張惠華
Chang, Hui-Hua
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 466
中文關鍵詞: 雙極症腸道菌相丙戊酸治療成效成纖維細胞生長因子2
外文關鍵詞: bipolar disorder, gut microbiota, valproate, treatment outcome, fibroblast growth factor 2, FGF2
相關次數: 點閱:125下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:雙極症為一種情緒疾患,其特徵為周期性的兩極情緒變化,且平穩期的患者認知功能仍比對照者不佳。近年來,腸道菌相被提出透過雙向的腸-腦軸在情緒疾患上扮演重要的角色,而腸道功能失衡的理論(leaky gut)可能為情緒疾患致病的新途徑。然而,腸道菌相的組成和治療成果在雙極症患者的關係尚未明確。此外,近年研究指出成纖維細胞生長因子2不僅可以調控血管新生和神經可塑性,在維持腸道壁完整性中亦扮演重要的角色。因此,本研究中第一個研究目的為:探討腸道菌相在平穩期雙極症患者和控制組中的差異,並分析精神藥物使用對於雙極症患者腸道菌相的影響。第二個研究目的為:探討腸道菌相與臨床數值的關聯性,並進一步觀察成纖維細胞生長因子2於其中的角色。
    研究方法:本研究經國立成功大學醫學院附設醫院人體研究倫理審查委員會核可,招募符合DSM-5診斷標準的雙極症患者,並從社區招募排除精神相關共病的控制組。受試者於試驗糞便採檢前三個月內,使用益生菌或抗生素會加以排除。臨床檢測的部分會採集受試者空腹血糖偵測其臨床數值,包含血脂、血糖、內分泌和發炎數值。治療反應則是使用Alda量表進行評估。菌相分析使用Illumina次世代定序分析菌相16S rRNA的V3-V4區域,透過Mothur v.1.39.5和QIIME v1.9.0.整合生物資訊。
    研究結果:結果顯示菌相組成在平穩期雙極症患者和控制組中顯著不同,Verrucomicrobia和Klebsiella在控制組中有較高的豐富度,而Firmicutes和Lachnospiraceae則在雙極症患者中有較高的豐富度。我們更進一步去評估不同治療對於菌群的影響,發現使用抗精神病藥物和丙戊酸並無差異。而Enterococcaceae 和Paraprevotella分別在使用抗精神病藥物和丙戊酸的患者中有較高的豐富度。後續我們使用Alda量表去評估丙戊酸的治療反應,將雙極症患者分為治療反應差和治療反應佳者。儘管兩組的菌群並無顯著差異,Clostridiaceae 1在治療反應差的患者中有較高的豐富度,而Proteobacteria則在治療反應佳的患者中有較高的豐富度。
    此外,我們研究菌相和臨床數值在雙極症患者和控制組的相關性。在血脂的方面,Subdoligranulum和三酸甘油脂及低密度脂肪酸在控制組中呈正相關。而在血糖的相關性,Saccharimonadaceae與胰島素和糖化血色素在雙極症患者中呈正相關。對於發炎數值的相關性,Blautia和 Dorea與腫瘤壞死因子-α在雙極症患者中呈負相關。而在認知功能的相關性,Lachnospiraceae和Leuconostoc與遮蔽的持續性表現測驗呈正相關。此外,平穩期雙極性患者相對控制組有較高的成纖維細胞生長因子2,並且與疾病病程呈負相關。而成纖維細胞生長因子2濃度在雙極症患者中與Lachnospiraceae呈正相關,而與Akkermansia呈負相關。
    結論:本研究指出腸道菌相組成在平穩期雙極症患者和控制組中有顯著差異,並且會受到丙戊酸和抗精神病藥物治療的影響。此外,腸道菌相的改變與代謝、發炎指標和認知功能具有相關性。另外一方面,我們發現在平穩期雙極症患者中有較高的成纖維細胞生長因子2濃度,而其濃度在雙極症患者中與腸道菌相具有相關性。因此,由本研究可以得知腸道菌相對雙極症患者的影響,然而後續需基礎研究輔助驗證菌相在生理機能中的角色,將其作為潛在的治療標靶。

    Background. Bipolar disorder (BD) is a mood disorder, characterized by unusual shifts in mood (depression, hypomania, and mania), and caused the impairments of cognitive function even in euthymic stage. Recently, gut microbiota was reported to be a key role through the bidirectional brain-gut-microbiota axis in mental illness, and leaky gut theory became novel explaination of mood disorder. However, the relation of gut microbiota composition and treatment outcomes in BD patients remains unclear. Besides, recent studies suggested fibroblast growth factor 2 (FGF2) not only regulated angiogenesis and neuroplasticity but also played an important role in maintaining the gut barrier. Therefore, the first objective of the current study was to investigate the microbiota composition in euthymic BD patients and the controls, and to analyze the effect of the psychotropic drugs on the microbiota in BD patients. The secondary objective was to correlate the gut microbiota with clinical indices, and further to investigate the role of FGF2 in gut microbiota.
    Materials and Methods
    Subjects. This study proposal was approved by the institutional review boards at the National Cheng Kung University Hospital. We recruited patients with BD (n=77) who met DSM-5 criteria from outpatient settings at the National Cheng Kung University Hospital and the controls (n=36) without psychiatric disorder history from the community. All participants were required not to use probiotics and antibiotics for at least 3 months before the fecal sample collection.
    Measurements. Fasting blood samples were collected to detect clinical indices (include lipid, sugar, inflammatory profiles and endocrine). Treatment response of BD patients was assessed by Alda scale.
    Fecal microbiota analysis. The microbial profile was analyzed by the V3-V4 regions of the bacterial 16S ribosomal RNA (rRNA) gene with next-generation sequencing (Illumina MiSeq 16S Metagenomics). Bioinformatics analysis of the 16S rRNA gene sequence data was performed together with Mothur v.1.39.5 and QIIME v1.9.0.
    Results. The results showed that the microbiota compositions were significantly different between BD patients and controls (ANOSIM: p = 0.013*). Verrucomicrobia and Klebsiella were dominant in controls, and Firmicutes and Lachnospiraceae were dominant in BD patients. We further estimated the effect of different treatments on the microbial profile, and there was no significant difference in microbial compositions between antipsychotics (AP) and valproate (VPA) treatment. Enterococcaceae and Paraprevotella were dominant in the AP treatment and the VPA treatment, respectively. Then, we used the Alda scale to assess the VPA treatment response, and classified the BD patients into non-responder and responder groups. Although there was no significant difference in microbial compositions, Clostridiaceae 1 was dominant in non-responder group, and Proteobacteria was dominant in responder. Besides, we investigated the correlation between microbiota and clinical indices in BD patients and controls. For lipid profile, Subdoligranulum was positively correlated with triglycerides and low-density lipoprotein cholesterol (LDL) in controls. For sugar profile, Saccharimonadaceae was positively correlated with insulin and HbA1c in BD patients. For inflammatory profile, Blautia and Dorea were negatively correlated with tumor necrosis factor-α (TNF-α) in BD patients. For cognitive function, the relative abundance of Lachnospiraceae and Leuconostoc were positively correlated with mask CPT. Furthermore, the level of FGF2 was significantly lower in euthymic BD patients than the controls (6.7±6.5 vs 15.8±13.7, p = 0.009**), and was negatively correlated with duration of illness. The level of FGF2 was positively correlated with Lachnospiraceae, and negatively with Akkermansia in BD patients.
    Conclusion.
    Our findings indicated that gut microbiota composition was significantly different in euthymic BD and control subjects, and was altered by VPA and AP treatment. Besides, VPA-treatment response had influence on the gut microbiota composition. In addition, change of gut microbiota was correlated with the metabolic, inflammatory profile and cognitive function. On the other hand, we found the euthymic BD patients had significantly lower levels of FGF2 than control subjects, and the FGF2 was correlated with gut microbiota in euthymic BD patients. Thus, we understood the influence of gut microbiota on BD patients. However, further studies are needed to investigate the mechanism of gut microbiota in pathology of BD. Gut microbiota can be a potential therapeutic target in the future.

    中文摘要 I Abstract III 致謝 V Content VI Abbreviation XXVIII Chapter 1 Introduction 1 1.1 Bipolar disorder 1 1.1.1 Definition and clinical features of bipolar disorder 1 1.1.2 Clinical management and challenge of treatment in bipolar disorder 1 1.2 Microbiota 3 1.2.1 The brain-gut-microbiota axis 3 1.2.2 Microbiota and metabolic syndrome (MetS) 6 1.2.3 Microbiota in bipolar disorder patients 7 1.2.4 Effects of psychotropic drugs on microbiome composition 8 1.3 Fibroblast growth factor 2 (FGF2) 10 1.3.1 The role of FGF2 in psychiatric disorder 10 1.3.2 The FGF2 in central and peripheral system 10 1.3.3 Correlation of gut microbiota and FGF2 in bipolar disorder patients 10 Chapter 2 Objective of current study 11 Chapter 3 Material and Methods 12 3.1 Study design 12 3.2 Subjects 12 3.3 Clinical measurement 12 3.3.1 Disease severity 12 3.3.2 Numbers of hospitalizations 12 3.3.3 Adiposity and body fat distribution 13 3.3.4 Blood sample collection 13 3.3.5 Fasting lipid profiles 13 3.3.6 Fasting sugar profiles 13 3.3.7 Endocrine profile 14 3.3.8 Inflammatory profile 15 3.3.9 Valproate (VPA) serum concentration 15 3.3.10 Assessment of treatment response 16 3.3.11 Neurocognitive assessment 16 3.4 Microbiota analysis 17 3.4.1 16S metagenomics 17 3.5 Statistics 19 Chapter 4 Results 21 4.1 Microbiota composition in controls and BD patients 21 4.1.1 Demographic and clinical characteristics of the controls and BD patients 21 4.1.2 Microbial diversity in controls and BD patients 23 4.1.3 Firmicutes/Bacteroidetes ratio and its correlation with clinical indices in controls and BD patients 24 4.1.4 Dominant bacteria in controls and BD patients 25 4.1.5 Correlation of microbiota composition and clinical indices 25 4.1.6 The role of Akkermansia, Lactobacillus and Bifidobacterium in controls and BD patients 31 4.1.7 Correlation of microbiota composition and striatal DAT availability in controls and BD patients 31 4.2 Microbiota composition in BD patients with different treatment 32 4.2.1 Microbiota composition in controls and BD patients with different pharmacologic treatments 32 4.2.2 Effect of different pharmacologic treatments on microbiota composition 33 4.2.3 Effect of VPA-treatment duration on microbiota composition 38 4.3 Treatment response in BD patients with VPA treatment 42 4.3.1 VPA treatment response in BD patients 42 4.3.2 VPA treatment response in BD I and BD II patients 42 4.3.3 VPA treatment response in non responder and responder 43 4.4 Microbiota composition in BD I and BD II patients 48 4.4.1 Demographic and clinical characteristics of the BD I and BD II patients 48 4.4.2 Microbial diversity in BD I and BD II patients 48 4.4.3 Firmicutes/Bacteroidetes ratio and its correlation with clinical indices in BD I and BD II patients 49 4.4.4 Dominant bacteria in BD I and BD II patients 50 4.4.5 Correlation of microbiota composition and clinical indices in BD I and BD II patients 50 4.4.6 The role of Akkermansia, Lactobacillus and Bifidobacterium in BD I and BD II patients 52 4.5 Microbiota composition in BD patients with and without central obesity 52 4.5.1 The effect of central obesity on microbiota composition in controls and BD patients 52 4.5.2 Demographic and clinical characteristics of the BD patients with and without central obesity 54 4.5.3 Microbial diversity in BD patients with and without central obesity 55 4.5.4 Firmicutes/Bacteroidetes ratio and its correlation with clinical indices in BD patients with and without central obesity 57 4.5.5 Dominant bacteria in BD patients with and without central obesity 57 4.5.6 Correlation of microbiota composition and clinical indices in BD patients with and without central obesity 58 4.5.7 The role of Akkermansia, Lactobacillus and Bifidobacterium in BD patients with and without central obesity 59 4.6 Levels of FGF2 in controls and BD patients and their correlation of microbiota 60 4.6.1 Levels of FGF2 in control and BD patients 60 4.6.2 Correlation between the levels of FGF2 and clinical indices 60 4.6.3 Correlation between the levels of FGF2 and microbiota 61 Chapter 5 Discussion 288 5.1 Microbial profile in BD patients 288 5.1.1 Alpha diversity 288 5.1.2 Microbial composition 289 5.1.3 Effect of obesity on the microbiota 289 5.2 Correlation of gut microbiota and clinical indices 290 5.2.1 Correlation with disease severity 290 5.2.2 Correlation with lipid profile 290 5.2.3 Correlation with sugar profile 291 5.2.4 Correlation with endocrine 291 5.2.5 Correlation with inflammatory 292 5.2.6 Correlation with cognitive function 293 5.3 Potential probiotics: the role of Akkermansia in controls and BD patients 294 5.4 The role of FGF2 in BD 294 5.5 Clinical implication of this study 295 5.6 Limitation 296 Chapter 6 Conclusion 297 Chapter 7 Reference 298 Appendix 309

    Aizawa, E., Tsuji, H., Asahara, T., et al. (2019). Bifidobacterium and Lactobacillus Counts in the Gut Microbiota of Patients With Bipolar Disorder and Healthy Controls. 9(730). doi:10.3389/fpsyt.2018.00730
    Arndt, D., Xia, J., Liu, Y., et al. (2012). METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Research, 40(W1), W88-W95. doi:10.1093/nar/gks497
    Bahr, S. M., Tyler, B. C., Wooldridge, N., et al. (2015). Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Translational psychiatry, 5, e652. doi:10.1038/tp.2015.135
    Bahr, S. M., Weidemann, B. J., Castro, A. N., et al. (2015). Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure. EBioMedicine, 2(11), 1725-1734. doi:10.1016/j.ebiom.2015.10.018
    Baj, A., Moro, E., Bistoletti, M., et al. (2019). Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. International journal of molecular sciences, 20(6), 1482. doi:10.3390/ijms20061482
    Beck, L. H., Bransome, E. D., Jr., Mirsky, A. F., et al. (1956). A continuous performance test of brain damage. J Consult Psychol, 20(5), 343-350. doi:10.1037/h0043220
    Benítez-Páez, A., Gómez del Pugar, E. M., López-Almela, I., et al. (2020). Depletion of Blautia Species in the Microbiota of Obese Children Relates to Intestinal Inflammation and Metabolic Phenotype Worsening. 5(2), e00857-00819. doi:10.1128/mSystems.00857-19
    Bolyen, E., Rideout, J. R., Dillon, M. R., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. 37(8), 852-857.
    Bretler, T., Weisberg, H., Koren, O., et al. (2019). The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC medicine, 17(1), 112. doi:10.1186/s12916-019-1346-1
    Chao, A. J. S. J. o. s. (1984). Nonparametric estimation of the number of classes in a population. 265-270.
    Cheng, Y., Rodriguiz, R. M., Murthy, S. R., et al. (2015). Neurotrophic factor-alpha1 prevents stress-induced depression through enhancement of neurogenesis and is activated by rosiglitazone. Mol Psychiatry, 20(6), 744-754. doi:10.1038/mp.2014.136
    Chengappa, K. N. R., Baker, R. W., Shao, L., et al. (2003). Rates of response, euthymia and remission in two placebo-controlled olanzapine trials for bipolar mania. Bipolar disorders, 5(1), 1-5. doi:10.1034/j.1399-5618.2003.02237.x
    Clarke, K. R. J. A. j. o. e. (1993). Non‐parametric multivariate analyses of changes in community structure. 18(1), 117-143.
    Coello, K., Hansen, T. H., Sørensen, N., et al. (2019). Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain Behav Immun, 75, 112-118. doi:10.1016/j.bbi.2018.09.026
    Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 13(10), 701-712. doi:10.1038/nrn3346
    Cryan, J. F., O'Riordan, K. J., Cowan, C. S. M., et al. (2019). The Microbiota-Gut-Brain Axis. Physiological Reviews, 99(4), 1877-2013. doi:10.1152/physrev.00018.2018
    Cussotto, S., Strain, C. R., Fouhy, F., et al. (2019). Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology (Berl), 236(5), 1671-1685. doi:10.1007/s00213-018-5006-5
    Dabke, K., Hendrick, G., & Devkota, S. (2019). The gut microbiome and metabolic syndrome. The Journal of Clinical Investigation, 129(10), 4050-4057. doi:10.1172/JCI129194
    Dalile, B., Van Oudenhove, L., Vervliet, B., et al. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 16(8), 461-478. doi:10.1038/s41575-019-0157-3
    Davey, K. J., O'Mahony, S. M., Schellekens, H., et al. (2012). Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl), 221(1), 155-169. doi:10.1007/s00213-011-2555-2
    Davis, C. D. (2016). The Gut Microbiome and Its Role in Obesity. Nutr Today, 51(4), 167-174. doi:10.1097/nt.0000000000000167
    De Theije, C. G., Wopereis, H., Ramadan, M., et al. (2014). Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun, 37, 197-206. doi:10.1016/j.bbi.2013.12.005
    De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., et al. (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 156(1-2), 84-96. doi:10.1016/j.cell.2013.12.016
    Derrien, M., Vaughan, E. E., Plugge, C. M., et al. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol, 54(Pt 5), 1469-1476. doi:10.1099/ijs.0.02873-0
    Diana, C. R., Humberto, H. S., & Jorge, Y. F. (2015). Probiotic Properties of Leuconostoc mesenteroides Isolated from Aguamiel of Agave salmiana. Probiotics Antimicrob Proteins, 7(2), 107-117. doi:10.1007/s12602-015-9187-5
    Durack, J., & Lynch, S. V. (2019). The gut microbiome: Relationships with disease and opportunities for therapy. The Journal of experimental medicine, 216(1), 20-40. doi:10.1084/jem.20180448
    Edgar, R. C., Haas, B. J., Clemente, J. C., et al. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England), 27(16), 2194-2200. doi:10.1093/bioinformatics/btr381
    Evans, S. J., Bassis, C. M., Hein, R., et al. (2017). The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res, 87, 23-29. doi:10.1016/j.jpsychires.2016.12.007
    Ewels, P., Magnusson, M., Lundin, S., et al. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics (Oxford, England), 32(19), 3047-3048. doi:10.1093/bioinformatics/btw354
    Flowers, S. A., Evans, S. J., Ward, K. M., et al. (2017). Interaction Between Atypical Antipsychotics and the Gut Microbiome in a Bipolar Disease Cohort. Pharmacotherapy, 37(3), 261-267. doi:10.1002/phar.1890
    Forslund, K., Hildebrand, F., Nielsen, T., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262-266. doi:10.1038/nature15766
    Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clinical Chemistry, 18(6), 499-502. doi:10.1093/clinchem/18.6.499
    Glöckner, F. O., Yilmaz, P., Quast, C., et al. (2017). 25 years of serving the community with ribosomal RNA gene reference databases and tools. Journal of Biotechnology, 261, 169-176. doi:10.1016/j.jbiotec.2017.06.1198
    Gomes, A. C., Hoffmann, C., & Mota, J. F. (2018). The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 9(4), 308-325. doi:10.1080/19490976.2018.1465157
    Good, I. J. J. B. (1953). The population frequencies of species and the estimation of population parameters. 40(3-4), 237-264.
    Grahame-Smith, D. G. (1992). Serotonin in affective disorders. Int Clin Psychopharmacol, 6 Suppl 4, 5-13. doi:10.1097/00004850-199206004-00004
    Grande, I., Berk, M., Birmaher, B., et al. (2016). Bipolar disorder. Lancet, 387(10027), 1561-1572. doi:10.1016/s0140-6736(15)00241-x
    Grande, I., Fries, G. R., Kunz, M., et al. (2010). The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig, 7(4), 243-250. doi:10.4306/pi.2010.7.4.243
    Grice, E. A., & Segre, J. A. (2012). The human microbiome: our second genome. Annu Rev Genomics Hum Genet, 13, 151-170. doi:10.1146/annurev-genom-090711-163814
    Grof, P., Duffy, A., Cavazzoni, P., et al. (2002). Is response to prophylactic lithium a familial trait? J Clin Psychiatry, 63(10), 942-947.
    Grover, S., Malhotra, N., Chakrabarti, S., et al. (2012). Metabolic syndrome in bipolar disorders. Indian journal of psychological medicine, 34(2), 110-118. doi:10.4103/0253-7176.101767
    Grundy, S. M., Cleeman, J. I., Daniels, S. R., et al. (2005). Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 112(17), 2735-2752. doi:10.1161/circulationaha.105.169404
    Hayes, J. F., Miles, J., Walters, K., et al. (2015). A systematic review and meta-analysis of premature mortality in bipolar affective disorder. Acta psychiatrica Scandinavica, 131(6), 417-425. doi:10.1111/acps.12408
    Holmstrøm, K., Collins, M. D., Møller, T., et al. (2004). Subdoligranulum variabile gen. nov., sp. nov. from human feces. Anaerobe, 10(3), 197-203. doi:10.1016/j.anaerobe.2004.01.004
    Hu, S., Li, A., Huang, T., et al. (2019). Gut Microbiota Changes in Patients with Bipolar Depression. Adv Sci (Weinh), 6(14), 1900752. doi:10.1002/advs.201900752
    Huang, H., Li, Y., Liang, J., et al. (2018). Molecular Regulation of Histamine Synthesis. Frontiers in immunology, 9, 1392-1392. doi:10.3389/fimmu.2018.01392
    Huang, P. L. (2009). A comprehensive definition for metabolic syndrome. Disease models & mechanisms, 2(5-6), 231-237. doi:10.1242/dmm.001180
    Huang, T.-T., Lai, J.-B., Du, Y.-L., et al. (2019). Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. 10(98). doi:10.3389/fgene.2019.00098
    Jiang, H., Ling, Z., Zhang, Y., et al. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun, 48, 186-194. doi:10.1016/j.bbi.2015.03.016
    Jiang, Y., Liu, Y., Gao, M., et al. (2020). Nicotinamide riboside alleviates alcohol-induced depression-like behaviours in C57BL/6J mice by altering the intestinal microbiota associated with microglial activation and BDNF expression. Food Funct, 11(1), 378-391. doi:10.1039/c9fo01780a
    Jones, C. R. G. (2013). Wisconsin Card Sorting Test (WCST). In F. R. Volkmar (Ed.), Encyclopedia of Autism Spectrum Disorders (pp. 3389-3391). New York, NY: Springer New York.
    Kang, D.-W., Adams, J. B., Gregory, A. C., et al. (2017). Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 5(1), 10. doi:10.1186/s40168-016-0225-7
    Kang, D. W., Adams, J. B., Coleman, D. M., et al. (2019). Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci Rep, 9(1), 5821. doi:10.1038/s41598-019-42183-0
    Kelly, J. R., Kennedy, P. J., Cryan, J. F., et al. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci, 9, 392. doi:10.3389/fncel.2015.00392
    Kim, Y. K., & Shin, C. (2018). The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Pathophysiological Mechanisms and Novel Treatments. Curr Neuropharmacol, 16(5), 559-573. doi:10.2174/1570159x15666170915141036
    Koren, O., Spor, A., Felin, J., et al. (2011). Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A, 108 Suppl 1(Suppl 1), 4592-4598. doi:10.1073/pnas.1011383107
    Leucht, S., Fennema, H., Engel, R., et al. (2013). What does the HAMD mean? J Affect Disord, 148(2), 243-248. doi:10.1016/j.jad.2012.12.001
    Liu, Q., Li, Y., Song, X., et al. (2020). Both gut microbiota and cytokines act to atherosclerosis in ApoE−/− mice. Microbial Pathogenesis, 138, 103827. doi:10.1016/j.micpath.2019.103827
    Liu, X., Zhang, T., He, S., et al. (2014). Elevated serum levels of FGF-2, NGF and IGF-1 in patients with manic episode of bipolar disorder. Psychiatry Res, 218(1-2), 54-60. doi:10.1016/j.psychres.2014.03.042
    Liu, Y., Song, X., Zhou, H., et al. (2018). Gut Microbiome Associates With Lipid-Lowering Effect of Rosuvastatin in Vivo. Front Microbiol, 9, 530. doi:10.3389/fmicb.2018.00530
    Louis, S., Tappu, R. M., Damms-Machado, A., et al. (2016). Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing. PLoS One, 11(2), e0149564. doi:10.1371/journal.pone.0149564
    Lu, Q., Lai, J., Lu, H., et al. (2019). Gut Microbiota in Bipolar Depression and Its Relationship to Brain Function: An Advanced Exploration. Front Psychiatry, 10, 784. doi:10.3389/fpsyt.2019.00784
    Ludwig, J. A., QUARTET, L., Reynolds, J. F., et al. (1988). Statistical ecology: a primer in methods and computing (Vol. 1): John Wiley & Sons.
    Macfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proc Nutr Soc, 62(1), 67-72. doi:10.1079/pns2002207
    Magoč, T., & Salzberg, S. L. J. B. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. 27(21), 2957-2963.
    Manchia, M., Adli, M., Akula, N., et al. (2013). Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report. PLoS One, 8(6), e65636. doi:10.1371/journal.pone.0065636
    Martin, M. J. E. j. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. 17(1), 10-12.
    Mathewson, N. D., Jenq, R., Mathew, A. V., et al. (2016). Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nature Immunology, 17(5), 505-513. doi:10.1038/ni.3400
    Matsumoto, M., Kibe, R., Ooga, T., et al. (2012). Impact of Intestinal Microbiota on Intestinal Luminal Metabolome. Scientific Reports, 2(1), 233. doi:10.1038/srep00233
    Matthews, D. R., Hosker, J. P., Rudenski, A. S., et al. (1985). Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419. doi:10.1007/BF00280883
    McCune, B., Grace, J. B., & Urban, D. L. (2003). Analysis of Ecological Communities. 2(289), 303-305.
    Merikangas, K. R., Jin, R., He, J. P., et al. (2011). Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry, 68(3), 241-251. doi:10.1001/archgenpsychiatry.2011.12
    Michalak, E. E., Murray, G., Young, A. H., et al. (2008). Burden of bipolar depression: impact of disorder and medications on quality of life. CNS Drugs, 22(5), 389-406. doi:10.2165/00023210-200822050-00003
    Miklowitz, D. J., & Johnson, S. L. (2006). The psychopathology and treatment of bipolar disorder. Annu Rev Clin Psychol, 2, 199-235. doi:10.1146/annurev.clinpsy.2.022305.095332
    Morgan, A. P., Crowley, J. J., Nonneman, R. J., et al. (2014). The antipsychotic olanzapine interacts with the gut microbiome to cause weight gain in mouse. PLoS One, 9(12), e115225-e115225. doi:10.1371/journal.pone.0115225
    Muscogiuri, G., Cantone, E., Cassarano, S., et al. (2019). Gut microbiota: a new path to treat obesity. International Journal of Obesity Supplements, 9(1), 10-19. doi:10.1038/s41367-019-0011-7
    Ni, Y., Yang, X., Zheng, L., et al. (2019). Lactobacillus and Bifidobacterium Improves Physiological Function and Cognitive Ability in Aged Mice by the Regulation of Gut Microbiota. Mol Nutr Food Res, 63(22), e1900603. doi:10.1002/mnfr.201900603
    Obrenovich, M. E. M. (2018). Leaky Gut, Leaky Brain? Microorganisms, 6(4). doi:10.3390/microorganisms6040107
    Okasha, T. A., El Sheikh, M. M., El Missiry, A. A., et al. (2014). Cognitive functions in euthymic Egyptian patients with bipolar disorder: are they different from healthy controls? J Affect Disord, 166, 14-21. doi:10.1016/j.jad.2014.04.051
    Ondov, B. D., Bergman, N. H., & Phillippy, A. M. J. B. b. (2011). Interactive metagenomic visualization in a Web browser. 12(1), 385.
    Ou, Z., Deng, L., Lu, Z., et al. (2020). Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer's disease. Nutr Diabetes, 10(1), 12. doi:10.1038/s41387-020-0115-8
    Painold, A., Mörkl, S., Kashofer, K., et al. (2019). A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar disorders, 21(1), 40-49. doi:10.1111/bdi.12682
    Perry, R. J., Peng, L., Barry, N. A., et al. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213-217. doi:10.1038/nature18309
    Pryor, R., Martinez-Martinez, D., Quintaneiro, L., et al. (2020). The Role of the Microbiome in Drug Response. Annu Rev Pharmacol Toxicol, 60, 417-435. doi:10.1146/annurev-pharmtox-010919-023612
    Quast, C., Pruesse, E., Yilmaz, P., et al. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. doi:10.1093/nar/gks1219
    Reininghaus, E. Z., Wetzlmair, L. C., Fellendorf, F. T., et al. (2018). The Impact of Probiotic Supplements on Cognitive Parameters in Euthymic Individuals with Bipolar Disorder: A Pilot Study. Neuropsychobiology, 1-8. doi:10.1159/000492537
    Richard, H. T., & Foster, J. W. (2003). Acid Resistance in Escherichia coli. In Advances in Applied Microbiology (Vol. 52, pp. 167-186): Academic Press.
    Rogers, G. B., Keating, D. J., Young, R. L., et al. (2016). From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry, 21(6), 738-748. doi:10.1038/mp.2016.50
    Roshanaei-Moghaddam, B., & Katon, W. (2009). Premature mortality from general medical illnesses among persons with bipolar disorder: a review. Psychiatr Serv, 60(2), 147-156. doi:10.1176/ps.2009.60.2.147
    Russell, J. T., Roesch, L. F. W., Ördberg, M., et al. (2019). Genetic risk for autoimmunity is associated with distinct changes in the human gut microbiome. Nat Commun, 10(1), 3621. doi:10.1038/s41467-019-11460-x
    Rybakowski, J. K. (2014). Response to lithium in bipolar disorder: clinical and genetic findings. ACS chemical neuroscience, 5(6), 413-421. doi:10.1021/cn5000277
    Schirmer, M., Franzosa, E. A., Lloyd-Price, J., et al. (2018). Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol, 3(3), 337-346. doi:10.1038/s41564-017-0089-z
    Schloss, P. D., Westcott, S. L., Ryabin, T., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. 75(23), 7537-7541.
    Schmitt, L. (2013). Finger-Tapping Test. In F. R. Volkmar (Ed.), Encyclopedia of Autism Spectrum Disorders (pp. 1296-1296). New York, NY: Springer New York.
    Schwiertz, A., Taras, D., Schäfer, K., et al. (2010). Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring), 18(1), 190-195. doi:10.1038/oby.2009.167
    Scriven, M., Dinan, T. G., Cryan, J. F., et al. (2018). Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Diseases, 6(3). doi:10.3390/diseases6030078
    Segata, N., Izard, J., Waldron, L., et al. (2011). Metagenomic biomarker discovery and explanation. 12(6), R60.
    Sherwin, E., Rea, K., Dinan, T. G., et al. (2016). A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol, 32(2), 96-102. doi:10.1097/mog.0000000000000244
    Shimoyama, I., Ninchoji, T., & Uemura, K. (1990). The finger-tapping test. A quantitative analysis. Arch Neurol, 47(6), 681-684. doi:10.1001/archneur.1990.00530060095025
    Simpson, E. H. J. n. (1949). Measurement of diversity. 163(4148), 688-688.
    Singh, M., Kakkar, A., Sharma, R., et al. (2017). Synergistic Effect of BDNF and FGF2 in Efficient Generation of Functional Dopaminergic Neurons from human Mesenchymal Stem Cells. Sci Rep, 7(1), 10378. doi:10.1038/s41598-017-11028-z
    Siragusa, S., De Angelis, M., Di Cagno, R., et al. (2007). Synthesis of γ-Aminobutyric Acid by Lactic Acid Bacteria Isolated from a Variety of Italian Cheeses. Applied and Environmental Microbiology, 73(22), 7283. doi:10.1128/AEM.01064-07
    Sole, B., Jimenez, E., Torrent, C., et al. (2017). Cognitive Impairment in Bipolar Disorder: Treatment and Prevention Strategies. Int J Neuropsychopharmacol, 20(8), 670-680. doi:10.1093/ijnp/pyx032
    Song, X., Dai, D., He, X., et al. (2015). Growth Factor FGF2 Cooperates with Interleukin-17 to Repair Intestinal Epithelial Damage. Immunity, 43(3), 488-501. doi:10.1016/j.immuni.2015.06.024
    Stacey, D., Schubert, K. O., Clark, S. R., et al. (2018). A gene co-expression module implicating the mitochondrial electron transport chain is associated with long-term response to lithium treatment in bipolar affective disorder. Translational psychiatry, 8(1), 183-183. doi:10.1038/s41398-018-0237-0
    Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Res, 1693(Pt B), 128-133. doi:10.1016/j.brainres.2018.03.015
    Sudo, N., Chida, Y., Aiba, Y., et al. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol, 558(Pt 1), 263-275. doi:10.1113/jphysiol.2004.063388
    Sun, Y., Baptista, L. C., Roberts, L. M., et al. (2020). The Gut Microbiome as a Therapeutic Target for Cognitive Impairment. J Gerontol A Biol Sci Med Sci, 75(7), 1242-1250. doi:10.1093/gerona/glz281
    Takebayashi, M., Hashimoto, R., Hisaoka, K., et al. (2010). Plasma levels of vascular endothelial growth factor and fibroblast growth factor 2 in patients with major depressive disorders. J Neural Transm (Vienna), 117(9), 1119-1122. doi:10.1007/s00702-010-0452-1
    Tang, M. M., Lin, W. J., Pan, Y. Q., et al. (2018). Fibroblast Growth Factor 2 Modulates Hippocampal Microglia Activation in a Neuroinflammation Induced Model of Depression. Front Cell Neurosci, 12, 255. doi:10.3389/fncel.2018.00255
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. (2002). Circulation, 106(25), 3143-3421.
    Thomas, C. M., Hong, T., van Pijkeren, J. P., et al. (2012). Histamine Derived from Probiotic Lactobacillus reuteri Suppresses TNF via Modulation of PKA and ERK Signaling. PLoS One, 7(2), e31951. doi:10.1371/journal.pone.0031951
    Tomova, A., Husarova, V., Lakatosova, S., et al. (2015). Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav, 138, 179-187. doi:10.1016/j.physbeh.2014.10.033
    Tournier, M., Neumann, A., Pambrun, E., et al. (2019). Conventional mood stabilizers and/or second-generation antipsychotic drugs in bipolar disorders: A population-based comparison of risk of treatment failure. J Affect Disord, 257, 412-420. doi:10.1016/j.jad.2019.07.054
    Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., et al. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-1031. doi:10.1038/nature05414
    Turner, C. A., Watson, S. J., & Akil, H. (2012). The fibroblast growth factor family: neuromodulation of affective behavior. Neuron, 76(1), 160-174. doi:10.1016/j.neuron.2012.08.037
    Vacca, M., Celano, G., Calabrese, F. M., et al. (2020). The Controversial Role of Human Gut Lachnospiraceae. Microorganisms, 8(4). doi:10.3390/microorganisms8040573
    Vieta, E., Berk, M., Schulze, T. G., et al. (2018). Bipolar disorders. Nature Reviews Disease Primers, 4, 18008. doi:10.1038/nrdp.2018.8
    Wei, Y., Melas, P. A., Wegener, G., et al. (2014). Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. Int J Neuropsychopharmacol, 18(2). doi:10.1093/ijnp/pyu032
    Weiner, M., Warren, L., & Fiedorowicz, J. G. (2011). Cardiovascular morbidity and mortality in bipolar disorder. Annals of clinical psychiatry : official journal of the American Academy of Clinical Psychiatrists, 23(1), 40-47.
    Whittaker, R. H. (1972). EVOLUTION AND MEASUREMENT OF SPECIES DIVERSITY. 21(2-3), 213-251. doi:10.2307/1218190
    Woo, Y. S., Yoon, B. H., Song, J. H., et al. (2020). Clinical correlates associated with the long-term response of bipolar disorder patients to lithium, valproate or lamotrigine: A retrospective study. PLoS One, 15(1), e0227217. doi:10.1371/journal.pone.0227217
    Wu, C. K., Tseng, P. T., Chen, Y. W., et al. (2016). Significantly higher peripheral fibroblast growth factor-2 levels in patients with major depressive disorder: A preliminary meta-analysis under MOOSE guidelines. Medicine (Baltimore), 95(33), e4563. doi:10.1097/md.0000000000004563
    Xu, Y., Wang, N., Tan, H. Y., et al. (2020). Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol, 11, 219. doi:10.3389/fmicb.2020.00219
    Yano, Jessica M., Yu, K., Donaldson, Gregory P., et al. (2015). Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell, 161(2), 264-276. doi:10.1016/j.cell.2015.02.047
    Yatham, L. N., Kennedy, S. H., Parikh, S. V., et al. (2018). Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar disorders, 20(2), 97-170. doi:10.1111/bdi.12609
    Yilmaz, P., Parfrey, L. W., Yarza, P., et al. (2013). The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 42(D1), D643-D648. doi:10.1093/nar/gkt1209 %J Nucleic Acids Research
    Zhai, Q., Feng, S., Arjan, N., et al. (2019). A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr, 59(19), 3227-3236. doi:10.1080/10408398.2018.1517725
    Zhai, R., Xue, X., Zhang, L., et al. (2019). Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice. Front Cell Infect Microbiol, 9, 239. doi:10.3389/fcimb.2019.00239
    Zheng, P., Zeng, B., Zhou, C., et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry, 21(6), 786-796. doi:10.1038/mp.2016.44
    Zimmet, P., Magliano, D., Matsuzawa, Y., et al. (2005). The metabolic syndrome: a global public health problem and a new definition. J Atheroscler Thromb, 12(6), 295-300. doi:10.5551/jat.12.295

    無法下載圖示 校內:2025-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE