簡易檢索 / 詳目顯示

研究生: 吳品霖
Wu, Pin-Lin
論文名稱: 心房中膈缺損之雙導管電腦模擬訓練系統
Computer Simulation of Double-Catheter Training System for Atrial Septal Defect (ASD)
指導教授: 陳天送
Chen, Tain-Song
共同指導教授: 謝凱生
Shieh, Kai-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 37
中文關鍵詞: 介入性治療心房中膈缺損雙導管模擬訓練系統
外文關鍵詞: Interventional procedure, Atrial Septal Defect (ASD), double catheter, simulating training system
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著心導管介入性治療的進步與發展,心房中膈缺損關閉術已經成為治療第二型心房中膈缺損的主要方式。心血管介入性治療的優點有: 治療中出血量少,傷口更小,也比傳統開心臟手術減少疼痛並縮短住院時間。然而,治療中所提供的二維X光影像無法提供實施治療者精確的人體心臟立體結構與缺損實際的三維位置,所以對於新進的醫師來說,是具有一定的困難度的。一般來說,心血管介入性治療的訓練都是由資深醫師帶領新進醫生學習,但這種方式具有一定的潛在危險性,因此本研究將設計一套心房中膈缺損之雙導管電腦模擬訓練系統,提供醫師做為練習的平台,熟悉治療中的各個流程,學習如何操縱導管,使之能引導至正確位置進行診斷及治療。
    系統提供使用者介面包含醫師操作時參數的紀錄,例如:手施予導管的力量、雙導管的位移與旋轉角度、完成治療流程所需時間…等。同時在介面中顯示顯影圖像,讓醫師了解治療過程中,導管在人體內的相關位置做為參考。此外,本系統也可設定或提供治療中可能遇到的真實情況做模擬,例如特定位置導管的操作技巧,如果不小心碰撞到血管壁,將會產生反推力量讓使用者有所感知並調整,使模擬過程更加真實並且達到練習成果。未來可以做為醫院的教學平台,讓使用者可以在無風險及低成本的環境下,重複練習治療流程而達到熟練效果,增加治療的成功率。

    In recent years, with the development of cardiovascular interventional procedure, atrial septal defect (ASD) surgery has become the main way to treat type II ASD. The advantages of cardiovascular interventional procedure are: reduce the possibility of infection, general anesthesia and the time of being in hospital. However, two-dimensional X-ray images provided in the procedure could not provide surgeons the actual structure of heart and precise three-dimensional position of the defect, so it’s not so easy for a new physician to perform. In general, new doctors is led by a senior physician for procedure training, but this approach has some potential dangers, therefore, this study will design a computer simulation of double-catheter training system for atrial septal defect that provides physician a platform to practice and be familiar with the operation of various processes, including learning how to manipulate the catheter to the correct position for diagnosis and treatment.
    The system provides the user interface including the records of the operating parameters such as the exerted force on the catheter, the displacement and rotation angle of the double catheter, the processing time required to complete a treatment…etc. In addition, the system can be set or provide the real situation which may be encountered while doing simulations of the treatment, for example, the operating skills of passing through the specific location, if the users accidentally bump into the vessel wall, the simulating training system will generate reverse thrust force to the users so that it can make the simulation more realistic and achieve the training outcomes. In the future, we expected that the system can be applied as a teaching platform in hospital that allows users to practice repeatedly to achieve proficiency results and finally improve the success rate of treatment.

    摘要 I Abstract II 誌謝 III Contents V Tables VII Figures VIII Chapter 1 Introduction 1 1.1 Introduction to atrial septal defect (ASD) 1 1.2 ASD closure surgery 2 1.2.1 Catheter and amplatzer septal occluder 3 1.2.2 X-ray angiography 6 1.3 Literature review 7 1.4 Motivation and purpose 14 Chapter 2 Materials and methods 15 2.1 System component description 15 2.1.1 Encoder 15 2.1.2 Load cell 17 2.1.3 Stepper motors 18 2.1.4 Voice coil motors 19 2.2 System design 19 2.3 System description 21 2.3.1 Force control 21 2.3.2 Visual feedback 21 2.4 Calibration of displacement and rotation measurement 23 Chapter 3 Results and discussions 26 3.1 System composition 26 3.2 System realization method 27 3.2.1 Catheter movement simulation 28 3.2.2 Catheter rotation simulation 29 3.2.3 Balloon aeration simulation 30 3.2.4 Amplatzer septal occluder deployment 30 3.3 User interface 32 3.3.1 Simulation environment 33 3.3.2 Warning indicator 34 3.3.3 Instant reaction data 35 Chapter 4 Conclusions 36 Reference 37

    [1] M.S. Minette and D.J. Sahn, “Congenital heart disease for the adult cardiologist,” Circulation, vol. 114, pp. 2190-7, 2006.
    [2] “http://www.cdc.gov/ncbddd/heartdefects/atrialseptaldefect.html.”
    [3] J. Masura, P. Gavora, A. Formanek, and Z.M. Hijazi, “Transcatheter closure of secundum atrial septal defects using the new self-centering Amplatzer septal occluder: initial human experience,” Catheterization and cardiovascular diagnosis, vol. 42, (no. 4), pp. 388-393, 1997.
    [4] “http://hospital.kingnet.com.tw/essay/essay.html?pid=24897.”
    [5] T.D. King, S.L. Thompson, C. Steiner, and N.L. Mills, “Secundum atrial septal defect: nonoperative closure during cardiac catheterization,” Jama, vol. 235, (no. 23), pp. 2506-2509, 1976.
    [6] “http://www.americanheart.org/.”
    [7] “http://www.alphamedical.ro/en/.”
    [8] “https://www.cookmedical.com/.”
    [9] “http://www.whichmedicaldevice.com/.”
    [10] “http://www.fda.gov /downloads/AdvisoryCommittees /CommitteesMeetingMaterials/ MedicalDevices/ MedicalDevicesAdvisoryCommittee/ CirculatorySystemDevicesPanel /UCM304944. pdf. ”
    [11] H.P. Kühl, R. Hoffmann, M.W. Merx, A. Franke, C. Klötzsch, W. Lepper, T. Reineke, J. Noth, and P. Hanrath, “Transthoracic echocardiography using second harmonic imagingdiagnostic alternative to transesophageal echocardiography for the detection of atrial right to left shunt in patients with cerebral embolic events,” Journal of the American College of Cardiology, vol. 34, (no. 6), pp. 1823-1830, 1999.
    [12] R. Dayal, P.L. Faries, S.C. Lin, J. Bernheim, S. Hollenbeck, B. DeRubertis, S. Trocciola, J. Rhee, J. McKinsey, and N.J. Morrissey, “Computer simulation as a component of catheter-based training,” Journal of vascular surgery, vol. 40, (no. 6), pp. 1112-1117, 2004.
    [13] “U.G. UG Kühnapfel, B. Neisius, H.G. Krumm, C. Kuhn, and M. Hübner, “CAD-based simulation and modelling for endoscopic surgery,” Proceedings SMIT, vol. 94, pp. 1-4, 1994.”
    [14] J.H. Anderson and R. Raghavan, “A vascular catheterization simulator for training and treatment planning,” Journal of digital imaging, vol. 11, (no. 1), pp. 120-123, 1998.
    [15] T.A. Kern and R. Werthschutzky, “Design of a haptic display for catheterization,” Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pp. 477-478, 2005.
    [16] S. Klages, T.A. Kern, T. Meiss, and R. Werthschutzky, “Piezoelectric Ultrasonic Actuator for a Haptic Display for Catheterisation,” EuroHaptics Conference, 2007 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2007. Second Joint, pp. 586-588, 2007.
    [17] X. Ma, S. Guo, N. Xiao, J. Guo, S. Yoshida, T. Tamiya, and M. Kawanishi, “Development of a novel robot-assisted catheter system with force feedback,” Mechatronics and Automation (ICMA), 2011 International Conference on, pp. 107-111.
    [18] G. Tholey, J.P. Desai, and A.E. Castellanos, “Force feedback plays a significant role in minimally invasive surgery: results and analysis,” Annals of surgery, vol. 241, (no. 1), pp. 102, 2005.
    [19] J. Peirs, J. Clijnen, D. Reynaerts, H.V. Brussel, P. Herijgers, B. Corteville, and S. Boone, “A micro optical force sensor for force feedback during minimally invasive robotic surgery,” Sensors and Actuators A: Physical, vol. 115, (no. 2), pp. 447-455, 2004.
    [20] R. Sedaghati, J. Dargahi, and H. Singh, “Design and modeling of an endoscopic piezoelectric tactile sensor,” International journal of solids and structures, vol. 42, (no. 21), pp. 5872-5886, 2005.
    [21] K. Takashima, K. Yoshinaka, T. Okazaki, and K. Ikeuchi, “An endoscopic tactile sensor for low invasive surgery,” Sensors and Actuators A: Physical, vol. 119, (no. 2), pp. 372-383, 2005.
    [22] K. Takashima, R. Shimomura, T. Kitou, H. Terada, K. Yoshinaka, and K. Ikeuchi, “Contact and friction between catheter and blood vessel,” Tribology International, vol. 40, (no. 2), pp. 319-328, 2007.
    [23] P. Polygerinos, T. Schaeffter, L. Seneviratne, and K. Althoefer, “Measuring tip and side forces of a novel catheter prototype: a feasibility study,” Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 966-971, 2009.
    [24] L.J. Love, J.F. Jansen, and P.D. Lloyd, “Force-based needle insertion for medical applications,” Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 2592-2597, 2009.
    [25] J. Guo, N. Xiao, S. Guo, and T. Tamiya, “Development of a force information monitoring method for a novel catheter operating system,” INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, vol. 13, (no. 6), pp. 1999-2009.
    [26] Y. Nagano and H. Fujimoto, “Development of Sensing System for Cerebral Aneurysm Treatment,” NTN Technical Review, (no. 76), pp. 63-67, 2008.
    [27] P. Puangmali, K. Althoefer, L.D. Seneviratne, D. Murphy, and P. Dasgupta, “State-of-the-art in force and tactile sensing for minimally invasive surgery,” Sensors Journal, IEEE, vol. 8, (no. 4), pp. 371-381, 2008.
    [28] J. Guo, S. Guo, N. Xiao, X. Ma, S. Yoshida, T. Tamiya, and M. Kawanishi, “A novel robotic catheter system with force and visual feedback for vascular interventional surgery,” International Journal of Mechatronics and Automation, vol. 2, (no. 1), pp. 15-24.
    [29] “http://www.orientalmotor.com/technology/articles/servo-motor-glossary.html.”
    [30] “http://www.wayneandlayne.com/.”
    [31] “http://www.directindustry.com.”
    [32] “http://www.a-tech.ca/”
    [33] “http://www.ni.com.”

    下載圖示 校內:2017-09-10公開
    校外:2017-09-10公開
    QR CODE