| 研究生: |
謝豐仰 Xie, Feng-Yang |
|---|---|
| 論文名稱: |
砷化鎵長晶之熱與質量傳遞分析 Analysis of Heat and Mass Transfer For Crystal Growth of GaAs |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 砷化鎵 、長晶 |
| 外文關鍵詞: | mass transfer, GaAs |
| 相關次數: | 點閱:66 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
半導體材料砷化鎵於長晶的過程中,包含了溫度場、流場、濃度場的互相耦合、液固相變化的潛熱效應、液固界面之移動與界面形狀變化、長晶時的濃度再分佈等,是一個複雜的問題,其中,濃度場中的溶質偏析現象,特別受到關注。
本文以軸對稱的模式來模擬砷化鎵在布氏爐中的長晶過程。數值方法在流場方面是使用SIMPLEST演算法來求解,以等效比熱-熱焓法來處理凝固時發生之潛熱效應,使用控制體積推導的方式去處理濃度場在液固界面的效應。本文以此模式來探討在不同工作條件(潛熱、雷利數)下,溫度場、液固界面形狀、流場強度及濃度再分佈間的相互關係。
研究發現,撓曲的液固界面是造成自然對流的主因,而自然對流對於溶質在分佈有強烈的主導性。潛熱釋放時,使俓向溫度梯度加大,造成更撓曲的液固界面的形狀及更強的流場,使得液固界面溶質偏析的現象增大,藉由調整爐壁溫度分佈發現,可得到較平坦的液固界面,進提昇界面之溶質分佈均勻度,來改善長晶之偏析現象。最後我們也使用控制體積修正的方式將界面附近的流線崎嶇現象,加以改善。
ABSTRACT
The crystal growth of GaAs includes the coupling of flow, temperature and concentration fields, the release of latent heat, the movement and the shape variation of solid/liquid interface, and the solute redistribution of dopant. This is a very complicated problem, in which especially the solute segregation obtains a great attention. In this paper, an axi-symmetric model was built to simulate the crystal growth of GaAs in a Bridgman furnace. The numerical scheme was the finite difference method. The SIMPLEST algorithm was used to solve the flow field and the specific heat/enthalpy method was applied to handle the release of latent heat. A special control-volume treatment of concentration field at the solid/liquid interface was utilized to derive the finite difference equations there. The proposed model was used to investigate the relationship among the flow and temperature fields, the shape of solid/liquid interface, and the solute redistribution under different working conditions (different thermal boundary conditions, Rayleigh numbers, and Stefan numbers). From the computing results, it can be found the natural convection is primarily induced by the curved solid/liquid interface, which is caused by the release of latent heat and the difference between solid and liquid thermal conductivities. The curved interface makes the segregation problem worse than the less curved one. The flow field induced by natural convection has little effect on the temperature field, but a great effect on the concentration field. Modifying the temperature distribution along the furnace wall can make the solid/interface flatter (less curved) and the natural convection weaker, which could improve the condition of solute segregation.
參考文獻
Adornato, P. M. and Brown, R. A., “Convection and Segregation in Directional Solidification,” J. of Crystal Growth, Vol. 80, pp. 155-189 (1987).
Anderson, D. A., Tannehill, J. C. and Pletcher, R. H., Computional Fluid Mechanics and Heat Trans. Hemisphere (1990).
Bourret, E. D. and Merk, E. C., “Effects of Total Liquid Encapsulation on The Characteristics of GaAs Single Crystals Growth by The Vertical Gradient Freeze Technique,” J. of Crystal Growth, Vol. 110, pp. 395-420 (1991).
Chang, C. J. and Brown, R. A., “Radial Segregation Induced by Natural Convection and Melt/Solid Interface Shape in Vertical Bridgeman Growth,” J. of Crystal Growth, Vol. 63, pp. 343-364 (1983).
Chao, L. S., “The Effect of Thermal Boundary Condition to The Liquid-Solid Interface in A Bridgeman Furnace,” The Fourteenth National Conference on Theoretical and Applied Mechanics, Chung Li, Taiwan, R. O. C., December14-15, pp. 1639 (1990).
Clemans, J. E. and Conway, J. H., “Vertical Gradient freeze growth of 75 mm diameter semi-insulating III-V Materials,” Malmo, G. Grossmann and L. Ledebo, eds., Adam Hilger, Bristol, pp. 423-439 (1988).
Crochet, M. J., Dupret, F. and Ryckmans, Y., “Numerical Simulation of Crystal Growth in A Vertical Bridgeman Furnace,” J. of Crystal Growth, Vol. 97, pp. 236-250 (1989).
Dantzig, J. A. and Chao, L. S., “Modeling Bridgeman Crystal Growth in Microgravity,” TMS Fall Meeting, Indianapolis, Indiana, USA, Oct. (1989).
Fleming, M. C., “Solidification Processing,” McGraw-Hill, New York, USA (1974).
Kim, D. H., “Dynamic Analysis of Transport Phenomena in Directional Solidification of Binary Alloys,” Sc. D. Thesis, MIT (1990).
Kim, D. H. and Brown, R. A., “Transient Simulation of Convection and Solute Segregation of GaAs Growth in Gradient Freeze Furnace,” J. of Crystal Growth, Vol. 109, pp. 66-74 (1991).
Kim, D. H. and Brown, R. A., “Modelling of directional solidification : from Scheil detailed numerical simulation,” J. of Crystal Growth, Vol. 109, pp. 50-65 (1991).
Kim, D. H. and Brown, R. A., “Modelling of dynamics of HgCdTe growth by the vertical Bridgman method,” J. of Crystal Growth, Vol. 114, pp. 411-434 (1991).
Kim, D. H. and Brown, R. A., “Transient simulation of convection and solute segregation of GaAs growth in gradient freeze furnace,” J. of Crystal Growth, Vol. 109, pp. 66-74 (1991).
Kurz, W and Fisher, D. J. “Foundamentals of Solidification,” Trans. Tech. Publication Ltd., Switzerland (1989).
Ozoe, H., Toh K. and Inoue T., “Transition Mechanism of Flow Modes in Czochralski Convection,” J. of Crystal Growth, Vol. 110, pp. 472-486 (1990).
Patankar, S. V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere (1980).
Roache, P. J., “Computational Fluid Dynamics,” Hermosa, New Mexico, USA (1976).
Smith, W. F., “Principles of Materials Science and Engineering,” McGraw-Hill, New York, USA, 2nd ed. (1990).
Sparrow, E. M., S. V. Patankar and S. Ramadhyani, “Analysis of Melting in The Melt Region,” ASME J. of Heat Transfer, Vol. 99, pp. 520-531 (1977).
Spalding, D. B. and Patankar, S. V., Int. J. Heat Mass Transfer, Vol. 15, pp. 1787-1800 (1986).
Voller, V. R., Cross, M. and Markstos, N. C., “An Enthalpy Method for Convection/Diffusion Phase Change,” Int. J. for Numerical Methods in Engineering, Vol. 24, pp. 271-295 (1987).
Voller, Y. R. and Prakash, C. A., “Fixed Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase Change Problems,” Int. J. Heat Mass Transfer, Vol. 30, pp. 1709-1725 (1987).
Wang, C. A., “Crystal Growth and Segregation in Vertical Bridgman Configuration,” Ph. D. Thesis, Mass. Inst. Technol., Cambridge (1984).
薛千山,布利基曼爐結晶成長之模式研究,碩士論文,成功大學工程科學研究所 (1992)。
洪仕育,布氏爐之熱與質量傳遞模式研究,碩士論文,成功大學工程科學研究所 (1993)。
林錦逢,GTE爐結晶成長之模式分析,碩士論文,成功大學工程科學研究所 (1994)。
丁建中,布氏爐單晶成長之熱流與界面現象,碩士論文,中央大學化學工程研究所 (1994)。
施耀泉,砷化鎵結晶成長之模式分析,碩士論文,成功大學工程科學研究所 (1999)。
王正麟,砷化鎵單晶成長分析,碩士論文,成功大學工程科學研究所 (2000)。