簡易檢索 / 詳目顯示

研究生: 翁翊翔
Weng, Yi-Xiang
論文名稱: 應用模糊原理以補償轉子電阻之無速度量測感應馬達驅動系統之研究
Study of Fuzzy Principle for Rotor Resistance Compensation in Speed-Sensorless Induction Motor Drives
指導教授: 陳添智
Chen, Tien-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 125
中文關鍵詞: 磁場導向控制無速度感測器感應馬達
外文關鍵詞: Fuzzy Logic and control, FOC, sensorless
相關次數: 點閱:148下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去,電壓/頻率(V/f)控制是一種控制感應馬達的開迴路方式。對於大部分的驅動工作,電壓/頻率控制方式是標準且足夠的操作方法。它是一種簡易的方法,但是內部的耦合效應將會使響應緩慢,並由於高階系統的影響,將易使馬達趨於不穩定之處。為了克服這個以上的困難,本論文提出的間接磁場導向控制(Field-oriented control)將會解決上面的問題。
    傳統的變速驅動馬達需要速度感測器來做馬達的定位及速度的回授。然而,速度感測器將會增加初始系統的大小以及維修的費用。因此,本論文提出一種替代的無速度感測器控制方法來取代速度感測器。此方法不需要速度感測器,但是為了獲得馬達的轉速,有些速度相關的資訊仍需獲得。而在本論文提出的方法中,主要是依靠量測馬達三相電壓以及三相電流資訊,經過計算後來獲得馬達轉速。
    另外一方面,無速度量測間接磁場導向控制(Speed-sensorless FOC)對於磁通非常敏感,且會受參數變化影響。為了達到預期的表現,它非常依靠精準的馬達參數鑑定。然而,這些參數易受物理現象而改變,像是溫度及飽和因素。因此,本論文提出了一種應用模糊理論來補償感應馬達轉子電阻的方法。此法可以有效針對馬達轉子電阻做精確的補償。
    最後以本論文所提出的控制架構搭配DSP TMS320F2812 具定點運算功能的32位元處理器和馬達驅動電路,來完成一高效能感應馬達驅動系統。由模擬和實作的結果驗證所提出的控制方法具有良好的效能。

    In the past, Volt / frequency (V/f) control is an open loop scalar control for induction motor (IM). V/f control is the standard operating method and is more than sufficient for most drive tasks. It is somewhat simple to implement, but the inherent coupling effect gives sluggish response and the system is easily prone to instability because of a high-order system effect. To overcome this difficulty, the foregoing problems can be solved by the field-oriented control (FOC).
    Conventional variable-speed motor drivers require the use of a speed sensor mounted at some point on the drive system in order to feed motor position and speed information back to the controller. However, the speed sensor increases initial system and operating maintenance costs. Therefore, an alternative solution to speed control is to develop and implement a speed-sensorless control strategy. The method does not need to use a speed sensor, but rather obtain the speed information required by other means. To obtain the motor speed, the three-phase voltage and currents are the required information.
    Speed-sensorless FOC, however, is very sensitive to flux, estimation that is mainly affected by parameter variations. It depends on accurate parameter identification to achieve the expected performance. However, these parameters are altered by physical phenomena such as temperature, saturation. Therefore, the paper proposes a fuzzy rotor resistance compensation to tune the parameter (rotor resistance) of the induction motors. Rotor resistance can be efficiently compensated under this method.
    Lastly, the proposed control scheme is implemented by using digital-signal-processor (DSP) TMS320F2812 and motor driver circuit. Simulation and experiment results will prove the feasibility of the resistance compensation for proposed speed-sensorless FOC drives.

    摘要.......................................................................................................................................I Abstract................................................................................................................................ II Contents.............................................................................................................................. III List of Figures and Tables....................................................................................................VI Symbols ...............................................................................................................................X Chapter 1 Introduction...........................................................................................................1 1.1Motivation ................................................................................................................2 1.2 Structure of the Thesis .............................................................................................6 Chapter 2 Speed-Sensorless Field-Oriented Control of Induction Motor .............................7 2.1 The Mathematical Model of Induction Motor.........................................................8 2.2 Speed Sensorless Field-Oriented Control.............................................................. 10 2.2.1 The Rotor Flux Estimator ........................................................................... 11 2.2.2 FOC Architecture........................................................................................ 14 2.2.3 Slip Frequency and Synchronous Speed Estimator.................................... 16 2.2.4 A Fuzzy Rotor Resistance Updating Scheme ............................................. 18 2.2.4.1 Fuzzy Control .................................................................................. 19 2.2.4.2 Influence of Rotor Resistance Variation on Induction Motor.......... 20 2.2.4.3 The fuzzy Rotor Resistance Compensating Scheme .......................22 Chapter 3 Simulation Results ..............................................................................................32 3.1 Computer Simulation............................................................................................. 32 3.1.1 Speed Tracking at 900 rpm, 500 rpm and 200 rpm .................................... 33 3.1.2 Speed Tracking at 900 rpm, 500 rpm and 200 rpm with Fuzzy Rotor Resistance Compensation .................................................................................... 53 3.1.3 Variable Speed Tracking with Rotor Resistance Compensation ................ 60 Chapter 4 Software and Hardware Configuration ...............................................................66 4.1 The Equipment Block............................................................................................66 4.2 The Software Configuration Block........................................................................ 67 4.2.1 The Process of Software Control Program .................................................70 4.2.2 Adaptive (Hysteresis-band) Current Control PWM...................................71 4.3 The Hardware Configuration Block ...................................................................... 72 4.3.1 The Feature of TMS320F2812 ................................................................... 72 4.3.2 The Motor Driver Circuit ........................................................................... 73 4.3.2.1 Voltage Source Inverter (VSI) Inverter............................................74 4.3.2.2 Current Measurement Circuits with Hall Sensor............................. 75 4.3.2.3 Shift and Scale Circuits ................................................................... 76 Chapter 5 Experiment Study................................................................................................ 77 5.1 Experiment results ................................................................................................. 77 5.1.1 Speed Tracking at 900 rpm, 500 rpm and 200 rpm .................................... 78 5.1.2 Speed Tracking at 900 rpm, 500 rpm and 200 rpm with Fuzzy Rotor Resistance Compensation .................................................................................... 96 5.1.3 Variable Speed Tracking with Rotor Resistance Compensation .............. 103 Chapter 6 Conclusions....................................................................................................... 109 6.1 Conclusions ......................................................................................................... 109 6.2 Suggestion for Further Possible Research........................................................... 110 Appendices ........................................................................................................................ 111 A.1 TMS320F2812 Emulation Board ....................................................................... 111 A.1.1 ADC ......................................................................................................... 111 A.1.2 DAC with SPI Interface........................................................................... 114 References ......................................................................................................................... 120 Vita.................................................................................................................................... 125

    [1] W. W. Chiang, “Optimal DC motor design for constant voltage seek motion,” IEEE Transactions on Energy Conversion, Vol. 5, No. 1, pp. 195-202, 1990.
    [2] A. Pagel, A. S. Meyer and C. F. Landy, “The design of equalizer windings for lap-wound DC machines,” IEEE Transactions on Industry Applications, Vol. 37, No. 2, pp. 1000-1011, 2000.
    [3] R. J. Storey, T. A. Coombs, A. M. K. Campbell, R. A. Weller and D. A. Cardwell, “Development of superconducting DC machines using bulk YBCO,” IEEE Transactions on Applied Superconductivity, Vol. 9, No. 2, pp. 1253-1256, 1999.
    [4] J. C. Salmon, B. W. Williams, “A split-wound induction motor design to improve the reliability of PWM inverter drives,” IEEE Transactions on Industry Applications, Vol. 26, No. 1, pp. 143-150, 1990.
    [5] D. H. Cho, H. K. Jung and C. G. Lee, “Induction motor design for electric vehicle using a niching genetic algorithm,” IEEE Transactions on Industry Applications, Vol. 37, No. 4, pp. 994-999, 2001.
    [6] A. Hadjamor P.L. TIMAR M. Poloujadoff, “Induction squirrel cage machine design with minimization of electromagnetic noise,” IEEE Transactions on Energy conversion, Vol. 10, No. 4, pp. 681-687, 1995.
    [7] A. M. Garcıa, T. A. Lipo, and D. W. Novotny, “A new induction motor V/f control method capable of high-performance regulation at low speeds,” IEEE Transactions on Industry Applications, Vol. 34, No. 4, pp. 813-821, 1998.
    [8] P. D. C. Perera, F. Blaabjerg, J. K. Pedersen, and P. Thogersen, “A sensorless, stable V/f control method for permanent-magnet synchronous motor drives,” IEEE Transactions on Industry Applications, Vol. 39, No. 3, pp. 783-791, 2003.
    [9] J. H. Jung, G. Y. Jeong, and B. H. Kwon, “Stability Improvement of V/f -Controlled Induction Motor Drive Systems by a Dynamic Current Compensator,” IEEE Transactions on Industry Applications, Vol. 51, No. 4, pp. 930-933, 2004.
    [10] G. W. Chang, G. Espinoza-Perez, E. Mendes and R. Ortega, “Tuning rules for the PI gains of field-oriented controllers of induction motors,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 3, pp. 592-602, 2000.
    [11] E. Mendes and A. T. Araiza, “Experimental comparison between field oriented control and passivity based control of induction motors,” in Proc. ISIE’97, Guimaraes, Portugal, pp. 84-88, 1997.
    [12] M. M. Bech, J. K. Pedersen and F. Blaabjerg, “Field-oriented control of an induction motor using random pulse-width modulation,” IEEE Transactions on Industry Applications, Vol. 37, No. 6, pp. 1777-1785, 2001.
    [13] A. B. Razzouk, A. Cheriti, “Field-oriented control of induction motors using neural-network decouplers,” IEEE Transactions on Power Electronics, Vol. 12, No. 4, pp. 752-763, 1997.
    [14] G. Diana and R.G. Harley, “An aid for teaching field oriented control applied to induction machines,” IEEE Transactions on Power System, Vol. 4, No. 3, pp. 1258-1286, 1989.
    [15] B. Mwinyiwiwa, B. T. Ooi, and Z. Wolanski, “UPFC using multiconverter operated by phase-shifted triangle carrier SPWM strategy,” IEEE Transactions on Industry Applications, Vol. 34, No. 3, pp. 495-500, 1998.
    [16] B. Mwinyiwiwa, Z. Wolanski, and O. Boon-Teck, “Microprocessor-implemented SPWM for multiconverters with phase-shifted triangle carriers,” IEEE Transactions on Industry Applications, Vo.34, No. 3, pp. 487-494, 1998.
    [17] Z. C. Zhang and B. T. Ooi, “Multimodular current-source SPWM converters for a superconducting magnetic energy storage system,” IEEE Transactions on Power Electronics, Vol. 8, No. 3, pp. 250-256, 1993.
    [18] E. Bassi, F. P. Benzi, S. Bolognani, and G. S. Buja, “A field orientation scheme for current-fed induction motor drives based on the torque angle closed-loop control,” IEEE Transactions on Industry Applications, Vol. 28, No. 5, pp. 1038-1044, 1992.
    [19] B. J. Kang and M. Liaw, “Random hysteresis PWM inverter with robust spectrum shaping,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 2, pp. 619-629, 2001.
    [20] B. K. Bose, “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system,” IEEE Transactions on Industrial Electronics, Vol. 37, No. 5, pp. 402-408, 1990.
    [21] Y. N. Lin and C. L. Chen, “Automatic IM parameter measurement under sensorless field-oriented control,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 1, pp. 111-118, 1999.
    [22] L. Zhen and L. Xu, “Sensorless field orientation control of induction machines based on a mutual MRAS scheme,” IEEE Transactions on Industrial Electronics, Vol. 45, No. 5, pp. 824-831, 1998.
    [23] M. Cirrincione and M. Pucci, “An MRAS-based sensorless high-performance induction motor drive with a predictive adaptive model,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 2, pp. 532-551, 2005.
    [24] B. H. Bae, G. B. Kim and S. K. Sul, “Improvement of low speed characteristics of railway vehicle by sensorless control using high frequency injection,” IEEE on Industry Applications Conference, Vol. 3, pp. 1874-1880, 2000.
    [25] Y. Wang, J. Lu, S. Huang and S. Qiu, “Speed sensorless vector control of induction motor based on the MRAS theory,” The 4th International power Electronics and Motion Control Conference, Vol. 2, pp. 645-648, 2004.
    [26] H. Tajima, G. Guidi, and H. Umida, “Consideration about problems and solutions of speed estimation method and parameter tuning for speed-sensorless vector control of induction motor drives,” IEEE Transactions on Industry Applications, Vol. 38, No. 5, pp. 1282-1289, 2002.
    [27] K. Akatsu and A. Kawamura, “Online rotor resistance estimation using the transient state under the speed sensorless control of induction motor,” IEEE Transactions on Power Electronics, Vol. 15, No. 3, pp. 553-560, 2000.
    [28] H. Kubota and K. Matsuse, “Speed sensorless field-oriented control of induction motor with rotor resistance adaptation,” IEEE Transactions on Industry Applications, Vol. 30, No. 5, pp. 1219-1224, 1994.
    [29] B. Robyns, F. Berthereau, J. P. Hautier, and H. Buyse, “A fuzzy-logic-based multimodel field orientation in an indirect FOC of an induction motor,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 2, pp. 380-388, 2000.
    [30] B. Heber, X. Longya, and Y. Tang, “Fuzzy logic enhanced speed control of an indirect field-oriented induction machine drive,” IEEE Transactions on Power Electronics, Vol. 12, No. 5, pp. 772-778, 1997.
    [31] E. Bim, “Fuzzy optimization for rotor constant identification of an indirect FOC induction motor drive,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 6, pp. 1293-1295, 2001.
    [32] Y. T. Kao and C. H. Liu, “Analysis and design of microprocessor-based vector-controlled induction motor drivers,” IEEE Transactions on Industrial Electronics, Vol. 39, No. 1, pp. 46-54, 1992.

    下載圖示 校內:2008-07-26公開
    校外:2008-07-26公開
    QR CODE