簡易檢索 / 詳目顯示

研究生: 林永定
Lin, Yong-Ding
論文名稱: 鎳基690合金與SUS 304L不銹鋼異種金屬電子束銲接特性與微結構研究
Microstructure and Characteristics of the Electron Beam Dissimilar Welding of Nickel-based Alloy 690 to SUS 304L
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 148
中文關鍵詞: 鎳基690合金SUS 304L異種金屬銲接EBW束偏量耐蝕性能
外文關鍵詞: nickel-based alloy 690, corrosion resistance, beam offset, electron beam welding, dissimilar welding, SUS 304L
相關次數: 點閱:135下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對核電廠反應爐構件中出現龜裂之鎳基600合金與SUS 308不銹鋼的異材銲接處,以耐蝕性更佳、鉻含量更高之鎳基690合金取代鎳基600合金,以及以低碳含量之SUS 304L不銹鋼取代308不銹鋼,配合具高能量密度與低總入熱量特性的電子束銲接製程(EBW),探討鎳基690合金與SUS 304L不銹鋼異種金屬銲件之製程參數與微結構組織及耐蝕性的關連性,以及銲件在空氣中與腐蝕介質環境中之耐蝕能力、機械性能與破斷行為,並與氬銲(GTAW)的銲件進行微結構與耐腐蝕能力比較。
    EBW銲道經顯微分析、機械性質、與耐腐蝕能力測試,實驗結果顯示EBW銲道枝晶間出現以TiN與富Cr-Ni相為主之析出物,而富Cr-Ni相則出現在TiN周圍。TiN來自於690合金母材,而富Cr-Ni相則為新形成之析出物。經modified Huey試驗後之顯微分析發現TiN析出物/基地介面和富Cr-Ni相析出物/基地介面提供優先孔蝕起始的地點。與GTAW銲道比較,EBW銲道晶界因受快速凝固作用,抑制碳化鉻的析出,無缺鉻區的生成,其銲道枝晶間析出物不但較小、較少且晶界Cr含量較高,耐沿晶腐蝕能力與抗枝晶間腐蝕能力亦明顯較優。在0.01M Na2S2O3 + 1wt-% NaCl 溶液環境中,因出現孔蝕,使得銲件加速腐蝕破壞,造成抗拉強度與總沿伸率明顯較在空氣中之試件為低。斷口分析結果顯示銲件斷裂在空氣介質中為延性韌窩破斷模式,在腐蝕介質環境中則為延性韌窩破斷與腐蝕斷裂混合模式。
    改變束偏量的研究結果顯示,當束偏量值在0~0.30mm之間時,雖抗拉強度值只有些微下降,但modified Huey試驗結果顯示,隨束偏量的增加,因銲道內Cr含量增加,使得抗枝晶間腐蝕能力隨之大幅提高;在0.01M Na2S2O3 + 1wt-% NaCl 溶液中之動電位極化測試結果發現,隨束偏量的增加,因銲道內Cr含量增加,造成銲道孔蝕起始電位值由385mVSCE (束偏量=0mm)提高到1050mVSCE (束偏量=0.30mm),顯示抗孔蝕性能亦大為增強。在提升銲件耐蝕性與兼顧機械性能下,束偏量為0.30mm是較佳之銲接製程參數。

    Many of the components deployed in nuclear reactor power plants are fabricated via the dissimilar welding of Alloy 600 and SUS 308 stainless steel (SS). However, maintenance records reveal that such components are prone to cracking during their service lives. The dissertation aims to resolve this problem by replacing these materials with higher Cr contented Alloy 690 and lower C contented SUS 304L SS. Morever, Alloy 690-SUS 304L SS weldments were jointed by means of electron beam welding(EBW) technique, which has a far higher energy density than traditional gas tungsten arc welding (GTAW) process. The interrelationships among the welding parameters, microstructure, corrosion resistance, mechanical properties and fracture behaviours of Alloy 690–SUS 304L SS EBW weldments were systematically examined in this study for comparing with those of the counterparts formed using a traditional GTAW process.
    The experimental results reveal that the interdendritic regions of the fusion zones(FZs)of the EBW weldments contain fine TiN precipitates and Cr-Ni rich phases. The former originate from the Alloy 690 base metal(BM), while the latter are new phases which precipitate around the TiN particles during the solidification process. Microscopic analysis of the weldments following a modified Huey test indicates that the matrix regions around the TiN precipitates and Cr-Ni rich phases represent preferential sites for corrosion pit initiation. Compared with the FZ formed in the GTAW process, the FZ in the EBW weldments solidifies more rapidly. This not only helps to suppress the precipitation of chromium carbide in the FZ, but also minimizes chromium depletion at the grain boundaries. Furthermore, it is found that fewer interdendritic precipitates are formed in the FZ of the EBW weldments than in that of the GTAW weldments. This phenomenon, coupled with the higher chromium content at the grain boundaries in the EBW specimens, causes the FZs of the EBW specimens to have significantly higher intergranular and interdendritic corrosion resistance properties than their GTAW counterparts. The fracture tests indicate that all of the EBW specimens rupture in the FZ during slow strain rate tests (SSRTs), irrespective of the test environment. However, the tensile strength and total tensile elongation of the specimens deformed in the 0.01M Na2S2O3 + 1wt-% NaCl corrosive environment are lower than those of the specimens deformed in air as a combined result of pitting corrosion in the FZ and corrosion-assisted cracking. Fractographic analysis reveals that the fracture surfaces of the specimens tested in air are characterized by a dimple-like structure, which is indicative of a ductile failure mode. By contrast, those of the specimens tested in a corrosive environment contain both a dimple-like structure and corrosive formations, which are thought to accelerate crack initiation and propagation, thereby leading to the premature failure of the specimen.
    It is found that the tensile strength of the weldment reduces slightly as the beam offset(BOF)is increased from 0 to 0.30 mm. However, the chromium content in the FZ increases, and hence the interdendritic corrosion resistance of the weldment is improved. Furthermore, potentiodynamic polarization tests performed using a 0.01M Na2S2O3 + 1wt-% NaCl solution show that the pit nucleation potential (Enp) increases from 385 mVSCE in the FZ of the weldment fabricated using a BOF of 0.00 mm to 1050 mVSCE in that formed using a BOF of 0.30 mm. The higher value of Enp implies that the FZ has an improved pitting corrosion resistance. It is thought that this enhanced corrosion resistance is the result of a higher chromium content in the FZ. Overall, the results demonstrate that when fabricating Alloy 690-SUS 304L SS dissimilar weldments using the EBW technique, a BOF setting of 0.3 mm represents the optimal processing condition in terms of maximizing the corrosion resistance and mechanical properties of the weldment.

    摘要.................................................Ⅰ 英文摘要.............................................Ⅱ 總目錄...............................................Ⅳ 表目錄...............................................Ⅶ 圖目錄...............................................Ⅷ 簡寫表...............................................XI 第一章 前言...........................................1 第二章 文獻回顧.......................................4 2.1核電廠構件劣化之問題...............................4 2.2核電廠異種銲接構件之問題 ...........................9 2.3鎳基690合金國內外的相關研究........................11 2.4核電廠使用電子束銲接法的展望.......................19 2.5本研究的動機與目的.................................23 第三章 理論基礎.......................................25 3.1 電子束銲接製程....................................25 3.1.1 電子束銲接的基本原理............................25 3.1.2電子束銲接三維溫度場計算模型.....................25 3.1.3電子束銲接鎖孔形成機制與孔穴的作用力分析 ........29 3.1.4 電子束銲接熔池表面的流動效應....................35 3.1.5 影響電子束銲接品質的因素........................36 3.1.6 電子束銲接快速凝固製程對顯微組織的影響..........39 3.1.7 電子束銲接在工業上的應用........................40 3.1.8 電子束銲接與雷射銲接之比較......................40 3.2 銲接凝固理論......................................42 3.2.1 枝晶的凝固成長過程..............................42 3.2.2 凝固模式、組成過冷理論..........................45 3.2.3 枝晶臂間距與機械性質之間的關係..................48 3.2.4 孔蝕機構........................................49 第四章 實驗方法與步驟.................................51 4.1 實驗流程..........................................51 4.2 母材..............................................51 4.3 電子束銲接實驗 ....................................55 4.4 顯微分析與機械性質測試............................57 4.4.1 微結構分析......................................57 4.4.2 硬度測試........................................59 4.4.3 常溫抗拉強度測試................................59 4.4.4 慢速應變速率拉伸測試............................59 4.4.5 腐蝕試驗........................................60 第五章 結果與討論.....................................62 5.1 電子束銲件的銲接性質分析..........................62 5.1.1 母材性質分析....................................62 5.1.2 銲接參數之分析..................................65 5.1.3 銲道與熱影響區顯微組織分析......................73 5.1.4 成份分析........................................78 5.1.5 組織結構分析....................................83 5.1.6 機械性質試驗 ....................................94 5.1.7 腐蝕試驗.......................................104 5.1.7.1 銲道成份、析出物與耐蝕性的關係...............104 5.1.7.2 銲道腐蝕的起源...............................106 5.1.8 GTAW與EBW銲道耐蝕性的比較.....................108 5.1.9 綜合討論......................................112 5.2 改變電子束束偏量之銲接性質分析...................118 5.2.1 銲接作業性.....................................118 5.2.2 銲道組織.......................................120 5.2.3 成分分析.......................................122 5.2.4 機械性能測試 ...................................125 5.2.5 抗腐蝕性能測試.................................128 5.2.5.1 modified Huey測試...........................128 5.2.5.2 電化學極化行為..............................128 5.2.6 綜合討論.......................................133 第六章 結論與建議....................................136 6.1 結論.............................................136 6.1.1 電子束銲件之銲接性質分析.......................136 6.1.2 改變電子束束偏量之銲接性質分析.................137 6.2 未來可能研究與探討方向...........................138 參考文獻.............................................139

    1. T. Ishihiara, Welding International, No.3, pp.209-216, 1989.
    2. Sindo Kou, “Welding metallurgy”, Wiley, New York, pp.179-187, 1987.
    3. B. E. Payne, Metal Construction, Vol.1, pp.79-86, 1969.
    4. J. D. Kim, J. H. Moon, Corrosion Science, Vol.46, pp.807-815, 2004.
    5. G. Sui, J. M. Titchmarsh, G. B. Heys, J. Congleton, Corrosion Science, Vol. 39, pp.565-573, 1997.
    6. K. Stiller, J. O. Nilsson and K. Norring, Metallurgical and Materials Transactions A, Vol.27A, No.2, pp.327-341, 1996.
    7. T. Y. Kuo and H. T. Lee, Materials Science and Engineering A, Vol.338, pp.202-212, 2002.
    8. H. T. LEE and S.L. Jeng, Science Technology Welding and Joining, Vol.6, No.4, pp.225-234, 2001.
    9. H. T. Lee and T. Y. Kuo, Science Technology Welding and Joining, Vol.4, No.2, pp.94-103, 1999.
    10. S. L. Jeng, H. T. Lee, W. P. Rehbach, T.Y. Kuo, T. E. Weirich and J. P. Mayer, Materials science and Engineering A, Vol.397, pp.229-238, 2005.
    11. H. T. Lee, S. L. Jeng, C. H. Yen and T. Y. Kuo, Journal of Nuclear Materials, Vol.335, pp.59-69, 2004.
    12. H. T. Lee, S. L. Jeng and T. Y. Kuo, Metallurgical and Materials Transactions A, Vol.34, pp.1097-1105, 2003.
    13. T. Y. Kuo, H. T. Lee, and C. C. Tu, Science Technology Welding and Joining, Vol.8, pp.39-48, 2003.
    14. Z. Sun, R. Karppi, Journal of Materials Processing Technology, Vol.59, pp.257-267, 1996.
    15. Y. S. Lim, J. S. Kim and H. S. Kwon, Materials Science and Engineering, A279, pp.192-200, 2000.
    16. Y. S. Kim, J. H. Suh, I. H. Kuk and J. S. Kim, Metallurgical and Materials Transactions A, Vol.28A, No.5, pp.1223-1231, 1997.
    17. Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim, H. S. Kwon, Corrosion Science, Vol. 43, pp. 1321-1335, 2001.
    18. H. T. Lee and Y. D. Lin, Science and Technology of Welding and Joining, Vol.11, No.6, pp.650-656, 2006.
    19. H. T. Lee, Y. D. Lin, T. Y. Kuo and S. L. Jeng, Materials Transactions, JIM, Vol.48, No.6, pp.1538-1547, 2007.
    20. J. R. Crum and R. C. Scarberry, Journal of Material Engineer System, Vol.4, No.3, pp.125-130, 1982.
    21. R. A. Page, Corrosion, Vol.39, No.10, pp.409-421, 1983.
    22. J. D. Kim, C.J. Kim and C. M. Chung, Journal of Material Processing Technology, Vol.114, pp.51-56, 2001.
    23. B. P. Miglin and L. W. Sarner, “Mechanism of Intergranular Corrosion of Inconel 600 Tubing in PWR Steam Generators”, Report NP-3957M, Electric Power Research Institute, Palo Alto, CA, 1985.
    24. T. Nagashima, A. Yokoyama, T. Akaba, Y. Nagura, O. Matsumoto, and T. Ishide, Welding World, Vol.34, pp.133-138, 1994.
    25. W. K. Lai, Journal of Chinese Corrosion Engineering, Vol.9, No.3, pp.168-180, 1995.
    26. USURC NUREG-0531, “Investigation and Evaluation of Stress Corrosion Cracking in Piping of Light Water Reactor Plants”, Feb., 1979.
    27. W. T. Tsai and T. F. Wu, Journal of nuclear materials, Vol.277, pp.169-174, 2000.
    28. J. J. Kai, G. P. Yu, C. H. Tsai, M. N. Lin and S. C. Yao, Metallurgical Transactions A, Vol.20A, pp.2057-2067, 1989.
    29. R. A. Page, ”Stress Corrosion Cracking of Alloy 600 and 690 and Weld Metals No. 82 and No.182 in High-Temperatue Water”, EPRI-Report, No. NP-2617, 1982.
    30. J. R. Crum, Corrosion, Vol.42, No.6, pp.368-372, 1986.
    31. F. Vaillant, D. Buisine, B. Prieux, Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems, Water Reactors, pp.219-231, 1995.
    32. F. Vaillant, D. Buisine, B. Prieux, J.C. Fournel and A. Golpi, “Effect of Microstructure and Mechanical Properties of Alloy 600 and 690 on Secondary Side SCC”, EPRJ Meeting on Improving the Understanding and Control of Corrosion on the Secondary Side of Steam Generators, Airlie (Virginia), pp.87-93, 1995.
    33. C. L. Briant and E. L. Hall, Corrosion, Vol.43, pp.539-547, 1987.
    34. R. A. Page, and A. Mcminn, “Stress Corrosion Cracking Resistance of Alloy 600 and 690 and Compatible Weld Metals in BWRs”, Report NP-5882M, Electric Power Research Institute, Palo, CA, 1988.
    35. R. E. Gold, D. L. Harrod, R. G. Aspden and A. J. Baum, “Alloy 690 for Steam Generator Tubing Applications”, Report NP-6997-M, Electric Power Research Institute, Palo Alto, CA, 1990.
    36. H. Nagano, K. Yamanaka, K. Kobayashi and M. Inoue, The Sumitomo Search, Vol.40, pp.57-70, 1989.
    37. H. Nagano, K. Yamanaka, K. Kobayashi and M. Inoue, Sumitomo Metals, Vol.40, No.4, pp.17-28, 1988.
    38. A. Fleming, “New Materials for High Temperature Service in Power Generation”, OMMI, No.1, pp.1-8, 2002.
    39. W. C. Fan, “The Influence of Nd-YAG Laser Welding Parameters on Dissimilar Welding of Alloy 690 and 304L Stainless Steel”, Master Thesis, National Cheng Kung University, Tainan, Taiwan, 2005.
    40. J. R. Crum, Corrosion, Vol.84, pp.178-188, 1984.
    41. A. J. Sedriks, S. Floreen and A. R. Mcilree, Corrosion, Vol.32, No.4, pp.157-158, 1976.
    42. T. M. Angeliu and G. S. Was, Metallurgical Transactions A, Vol.21A, pp.2097-2107, 1990.
    43. D. M. Symons, Metallurgical and Materials Transactions A, Vol.29A, pp.1265-1277, 1998.
    44. S. S. Hwang, H. P. Kim, D. H. Lee, U. C. Kim and J. S. Kim, Journal of Nuclear Materials, Vol.275, pp.28-36, 1999.
    45. W. Wu and C. H. Tsai, Metallurgical and Materials Transaction A, Vol.30A, pp.417-426, 1999.
    46. H. T. Lee and T. Y. Kuo, Science and Technology of Welding and Joining, Vol.4, No.4, pp.246-256, 1999.
    47. H. He, T. Czerwiec, C. Dong and H. Michel, Surface and Coating Technology, Vol.2, pp.331-338, 2003.
    48. J. G. Gonzalez-Rodriguez, M. Casales, M. A. Espinoza-Medina, C. Angeles-Chavez, G. Izquierdo and R. Guardian, Material Characterization, Vol.51, pp.309-314, 2003.
    49. Y. S. Lim, J. S. Kim, H. P. Kim and H. D. Cho, Journal of Nuclear Materials, Vol.335, pp.108-114, 2004.
    50. T. Y. Kuo, Science and Technology of Welding and Joining, Vol.10, No.5, pp.557-565, 2005.
    51. W. T. Tsai, C. L. Yu and J. I. Lee, Scripta Materialia, Vol.53, pp.505-509, 2005.
    52. T. Y. Kuo and S. L. Jeng, Journal of Physics D: Applied Physics, Vol.38, pp.722-728, 2005.
    53. S. S. Hsu, S. C. Tsai, J. J. Kai and C. H. Tsai, Journal of nuclear materials, Vol.184, pp.97-106, 1991.
    54. P. M. Scott, Corrosion Science, Vol.25, No.8, pp.583-589, 1985.
    55. A. Mcminn and R. A. Page, Corrosion, Vol.44, pp.239-249, 1988.
    56. J. M. Sarver, J. V. Monter and B. P. Migclin, Metallurgical and Materials Transactions A., Vol.20A, pp.5-14, 1989.
    57. J. M. Sarver, J. V. Monter and B. P. Migclin, “The Effect of the Behavior of Alloy 690”, the 4th International Symposium on Environmental Degradation of Materials in PWR, Jekyll Island, GA, pp.25-34, 1989.
    58. D. Choi and G. Was, Corrosion, Vol.46, No.1, pp.100-108, 1990.
    59. 張紅斌, 李守軍, 胡堯和, 謝錫善, 王劍志, 特鋼技術, 第四期, pp.2-11, 2003.
    60. W. L. Mankins and S. Lamb, “Nickel and Nickel Alloys”, 10th edn., ASM International, USA, pp.428-445, 1992.
    61. R. A. Page and A. Mcminn, Metallurgical Transactions A. pp.877-887, 1986.
    62. “Inconel 690”, Huntington Alloys, Inc., Huntington, WV, 1985.
    63. N. S. Mcintyre, R. D. Davidson, T. L. Walzak, A. M. Brennenstuhl, F. Gonzalez and S. Corazza, Corrosion Science, Vol.37, No.7, pp.1059-1083, 1995.
    64. I. J. Yang, Materials Chemistry and Physics, No.49, pp.50-55, 1997.
    65. G. S. Was, Corrosion, Vol.44, No.5, pp.288-289, 1988.
    66. J. M. Sarver, J. R. Crum and W. L. Mankins, Corrosion, Vol.44, No.5, pp.288-289, 1988.
    67. S. M. Bruemmer and C. H. Henager, 2nd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, American Nuclear Society, La Grange Park, IL, pp.293-300, 1986.
    68. G. P. Yu and H. C. Yao, Corrosion, Vol.46, No.5, pp.391-402, 1990.
    69. C. M. Brown and W. J. Mills, Corrosion, Vol.55, No.2, pp.173-186, 1999.
    70. W. T. Tsai, “Stress Corrosion and Corrosion Fatigue Crack Growth Behaviors of Inconel 690 in Thiosulfate-containing Aqueous Environments”, The Report of NSC, R. O. C, 1996.
    71. J. T. Lee, “The Study of Pitting Corrosion on Inconel 690”, The Report of NSC, R. O. C., 1996.
    72. L. L. W. Wilson and R. G. Aspden, “Caustic Stress Corrosion Cracking of Iron-Nickel-Chromium Alloys”, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, pp.1189-1204, 1973.
    73. L. L. W. Wilson and R. G. Aspden, Corrosion, Vol.32, No.5, pp.193-204, 1976.
    74. A. R. Mcilree and H. T. Micheis, Corrosion, Vol.33, No.2, pp.61-66, 1977.
    75. A. J. Sedriks, J. W. Schult and M. A. Cordovi, Corrosion Engineering, Vol.28, pp.82-95, 1979.
    76. J. P. Hammond, P. Patriarca, G. M. Slaughter and W. A. Maxwell, Corrosion, Vol.74, No.51, pp.31-38, 1974.
    77. A. Smith and R. Stratton, “Relationship Between Composition, Microstructure and Corrosion Behavior of Alloy 690 Steam Generator Tubing for PWR Systems”, Fourth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems, Water Reactors, Vol.5, pp.33-46, 1989.
    78. Y. K. Liu, B. Zhang, S. Zhang and Z. Zhu, “Effect of Sulfur and Magnesium on Hot Ductility and Pitting Corrosion for Inconel 690 Alloy”, Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems. Water Reactors, pp.91-97, 1995.
    79. D. B. Lowenstein, C. E. Shoernaker, J. A. Gorman, “Etching Techniques and Carbon Analysis for Alloy 690”, Fourth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems, Water Reactors, No.15, pp.1-5, 1989.
    80. J. M. Sarver, “Corrosion Extension Rate (CERT) Testing of Alloy 690 and 800 Nuclear Steam Generator Tubing”, Proceedings of the International Symposium Fontevraud III, Fontevraud, France, pp.12-16, 1994.
    81. 何歡, 董闖, 材料熱處理學報, 第25卷, 第6期, 2004年.
    82. W. Wu, and C. S. Yu, “The Weldment Properties under Mechanical Vibration”, The Nation Conference on Welding Technology, Welding Association of the R.O.C., Kaosiung, pp.74-78, March, 1996.
    83. 蘇子可, “Inconel 690合金銲件特性之研究”, 行政院原委會1992年研究報告, 1992.
    84. 吳威德, 游景森, 核子科學, Vol.33, pp.190-199, 1996.
    85. W. Wu, C. H. Tsai, F. H Kuo, W. H. Hsu and J. T. Sum, Nuclear Science Journal, Vol.34, No.4, pp.247-254, 1997.
    86. 李驊登, “鎳基690合金之銲接特性及銲道微觀組織分析”, 國科會專題研究計畫, No. NSC85-2216-E006-027, 1995.
    87. 李驊登, “銲材合金元素之添加對鎳基合金銲件微觀組織之影響”, 國科會專題研究計畫, No. NSC 87-2216-E006-001, 1997.
    88. 李驊登, “Ti合金元素添加對鎳基690銲件結構之改質設計研究”, 國科會專題研究計畫, No. NSC 89-2216-E-006-065, 2000.
    89. 李驊登, “銲材合金元素之添加對核電材料鎳基690與304L不銹鋼銲接劣化之改善研究”, 國科會專題研究計畫, No. NSC-TPC-E-006-013, 1998.
    90. H. T. Lee, T. Y. Kuo, C. J. Tu, D. C.Yeh and S. L. Jeng, Journal of the Chinese Society of Mechanical Engineers, Vol.20, No.3, pp.277-285, 1999.
    91. 郭聰源, 李驊登, 葉東昌, 杜青駿, 鄭勝隆, 金屬熱處理, 第57期, pp.15-22,1998.
    92. 葉東昌, 李驊登, 鄭勝隆, 郭聰源, “時效熱處理對鎳基690合金銲件之微觀組織影響之研究”, 中國機械工程學會第十六屆學術研討會, pp.143-150,1999.
    93. 李驊登, 郭聰源, 鄭勝隆, “銲材合金Nb的添加對鎳基690與304L不銹鋼銲件之機械性質與耐蝕性之影響”, 中國機械工程學會第十五屆學術研討會, pp.21-27, 1998.
    94. 李驊登, 郭聰源, 鄭勝隆, “鎳基690與304L不銹鋼的異種銲接特性與顯微組織研究”, 中華民國銲接協會年會論文, pp.A7-A12, 1998.
    95. 李驊登, 楊仲霖, 林永定, 郭聰源, “電子束銲接製程參數對690合金與304L不銹鋼異材銲接之影響”, 中華民國銲接協會年會論文, pp.A37-A44, 2002.
    96. S. L. Jeng, “Microstructure and Characteristics of the Dissimilar Welding of Nickel-based Alloy 690 to SUS 304L”, Phd Dissertation, National Cheng Kung University, Tainan, Taiwan, 2003.
    97. 鄭勝隆, “銲材合金元素之添加對鎳基690與304L不銹鋼之銲接特性研究”, 國立成功大學機械工程研究所碩士論文, 1997.
    98. C. T. Sims, N. S. Stoloff, and W. C. Hagel, “Superalloys II”, Wiley, New York, 1987.
    99. E. F. Bradley, “Superalloys:A Technical Guide”, ASM International, Metals Park, 1988.
    100. Z. Sun and J. C. Ion, Journal of Materials Science, Vol.30, pp.4205-4214, 1995.
    101. Y. S. Lim, J. S. Kim and H. S. Kwon, Journal of nuclear materials, Vol.336, pp.65-72, 2005.
    102. S. S. Hwang, D. H. Hur, J. H. Han and J. S. Kim, Nuclear engineer and design, Vol.217, pp.237-245, 2002.
    103. J. K. Shin, J. H. Suh, J. S. Kim and S. L. Kang, Surface and Coating Technology, Vol.107, pp.94-100, 1998.
    104. 周敏傑, 劉決弘, 莊運清, 賴文郎, 楊文志, “雷射加工技術手冊”, 財團法人工業技術研究院, 1989.
    105. 林俊仁, 何扭今, 林偉邦, 材料科學, Vol.27, No.3, pp.163-170, 1995.
    106. 古錦松, 何扭今, 銲接與切割, Vol.6, No.1, pp.1-8, 1996.
    107. C. L. Yang, “The Influence of Electron Beam Welding Parameters on Dissimilar Welding of Alloy 690 and 304L Stainless Steel”, Master Thesis, National Cheng Kung University, Tainan, Taiwan, 2002.
    108. B. G. Zhang, L. Wu, and J. C. Feng, Welding, Vol.2, pp.5-8, 2004.
    109. C. H. Lee, S. W. Kim, E. P. Yoon, Science and Technology of Welding and Joining, Vol.5, No.5, pp. 277-284, 2000.
    110. H. J. Stone, S. M. Roberts, R. C. Reed, Metallurgical and Materials Transactions A, Vol. 31, No.9, pp.2261-2274, 2000.
    111. C. A. Huang, T. H. Wang, C. H. Lee and W. C. Han, Materials Science and Engineering, A398, pp.275-281, 2005.
    112. P. Ferro, and A. Zambon, Materials Science and Engineering, A392, pp.94-105, 2005.
    113. Y. Uratani, S. Kuri, G. Takano and M. Nayama, “Application of Electron Beam Welding to Austenitic Stainless Steel for PWR Nuclear Power Plant Components”, The Report of Japan Power Engineering and Inspection Corporation, pp.71-80, 1996.
    114. Y. Tomita, H. Mabuchi and K. Koyama, “Improving Electron Beam Weldability of Heavy Steel Plates for PWR-Steam Generator”, Journal of Nuclear Science and Technology, Vol.33, No. 11, pp.869-878, 1996.
    115. D. Powers, G. Schubert, Welding Journal, Vol.79, No.2, pp.35-38, 2000.
    116. H. Q. Hu, “Fundamentals of Metallic Solidification”, China Machine Press, Beijing, 2000.
    117. Zhou, “Technology of Solidification”, China Machine Press, Beijing, 1998.
    118. C. P. Chen, “Microstructure and Texture Evolution of High Energy Density Beam (HED) Welded Duplex Stainless Steel”, Phd Thesis, National Sun Yat-sen University, Kaohsiung, Taiwan, 2000.
    119. 古錦松, 銲接與切割, 第8卷, 第5期, pp.40-45, 1998.
    120. 林俊仁, “表面張力效應對高銲深電子束銲接熔池行為之影響”, 國立中山大學博士論文, 1996.
    121. S. C. Wang and P. S. Wei, Metallurgical Transactions B, Vol.23B, pp.505-511, 1992.
    122. P. S. Wei and L. R. Chiou, ASME Journal of Heat Transfer, Vol.110, pp.918-923, 1988.
    123. P. S. Wei and Y. T. Chow, Metallurgical Transactions, Vol.23B, pp.81-90, 1992.
    124. P. S. Wei and W. H. Giedt, “Surface Tension Gradient-Driven Flow Around an Electron Beam Welding Cavity”, Welding Journal, Vol.64, pp.251s-529s, 1985.
    125. P. S. Wei and J. Y. Ho, International Journal of Heat and Mass Transfer, Vol.33, pp.2207-2217, 1990.
    126. P. S. Wei, T. H. Wu and Y. T. Chow, ASME Journal of Heat Transfer, Vol.112, pp.163-169, 1990.
    127. M. Liu, J. D. Kang, Yu Li and S. X. Chen, Acta Metallurgica Sinica, Vol.37, No.3, pp.301-306, 2001.
    128. 魏蓬生, “高能量銲接之熱傳及固化”, 國科會專題研究計劃, No. NSC 82-0401-E110-061, 1993.
    129. 劉金合, 胡特生, “高能密度銲”, 西北工業大學出版社, 1995。
    130. N. M. Qiu, “Discussion On Theory and Methods of Obtaining Deep Penetration in Electron Beam Welding”, Technology of Electron, Vol.4, pp.35-40, 1996.
    131. C. R. Heiple and J. R. Roper, Welding Journal, Vol.61, pp.97-104, 1982.
    132. 林世昌, “影響電子束銲接品質的幾個銲接參數”, 電工技術學會第六屆學術論文集, 北京, pp.166-172, 1999.
    133. H. Schultz, “Electron Beam Welding”, Abington Publishing, Cambridge England, 1993.
    134. S. C. Lin, B. L. Fan, Z.Y. Hu, X. M. Wang and Y. S. Zhang, Sensors and Actuators, Vol.35, pp.283-285, 1993.
    135. 關紹康, 王利國, 朱世杰, 王西科, 沈寧福, 現代鑄鐵, pp.22-26, 2004.
    136. G. Laflamme and J. Knoefel, “Application of Electron Beam Welding”, International Conference on Power Beam Technology, Brighton, Abington, Cambridge, pp.59-74, 1986.
    137. F. R. Chen, L. X. Huo and Y. F. Zhang, Electronics Process Technology, Vol.23, No.2, pp.55-58, 2002.
    138. S. Zheng, International Journal of Materials and Product Technology, Vol.3, No.6, pp.208-221, 1995.
    139. W. F. Savage, Welding Journal, Vol.35, No.4, pp.175-180, 1956.
    140. J. R. Crum, K. A. Hech, and T. M. Angeliu, “Effect of Different Thermal Treatments on the Corrosion Resistant of Alloy 690 Tubing”, EPRI Report NP-6703-M, 1990.
    141. 張文鋮, 張炳范, 杜則裕, 張志明, “銲接冶金學”, 機械工業出版社, 北京, 2001.
    142. W. Kurz and D. J. Fisher, “Fundamentals of Solidification”, Trans. Tech. Publications Ltd., Switzerland, pp.47-139, 1984.
    143. B. Chalmers, “Priciples of Solidification”, New York, pp.126-186, 1964.
    144. T. W. Clyne and W. Kurz, Metallurgical Transaction A. Vol.12A, pp.965-971, 1981.a
    145. M. C. Flemings, “Solidification Processing”, New York, McGray-Hill, pp.31-92 and pp.154-176, 1974.
    146. J. J. Reeves, Scripta Metallurgica, Vol.5, pp.1223, 1971.
    147. K. Fadhakrishna, AFS Transaction Vol.80, pp.56-61, 1980.
    148. 李慶春, 機械工程學報, Vol.4, pp.12-19, 1985.
    149. 李永發, “硫代硫酸根離子對鎳基690合金在氯化鈉水溶液中之孔蝕性質影響研究”, 國立成功大學材料科學及工程科學系碩士論文, 1997.
    150. J. A. Brooks and A. W. Thompson, International Materials Reviews, Vol.36, No.1, pp.16-44, 1991.
    151. A. Czyrska-Filemonowicz and K. Spiradek, Eur. Microscopy Anal. Vol.3, pp.13-14, 1995.
    152. R. S. Dutta and R. Tewari, British Corrosion Journal, Vol.34, No.3, pp.201-205, 1999.
    153. R. Aspden, “Corrosion Performance of Alloy 690”, in Processing Conference “EPRI Alloy 690 Workshop 89”, Virginia, Section 2, p.3-1, 1989.
    154. D. E. Passoja, British Welding Journal, pp.13-16, 1967.
    155. A. Salminen, A. Fellman and V. Kujanpaa, Proc. SPIE, Vol.5336, pp.84-94, 2004.
    156. Y. Arata, F. Matsuda, and S. Katayama, Trans. JWRI, Vol.6, pp.105-116, 1977.
    157. S. A. David, Welding Journal, Vol.60, No.4, pp.63-71, 1981.
    158. H. Q. Wu, J. C. Feng, J. S. He, B. G. Zhang, The Chinese Journal of Nonferrous Metals, Vol.14, No.8, pp.1313-1317, 2004.
    159. G. S. Was, Corrosion, Vol.46, No.4, pp.319-330, 1990.
    160. L. G. Berry, B. Post, S. Weissman, eds., Power Diffraction File, 2nd ed., Sets 6-10 (revised) Joint Committee on Power Diffraction Standards, Swarthmore, PA, p.135, 1980.
    161. M. J. Cieslak, T. J. Headley, T. Kollie and A. D. Romig, Metallurgical and Materials Transactions A, Vol.19A, No.9, pp.2319-2331, 1988.
    162. I. Gowrisankar, A. K. Bhaanduri, V. Seethaamam, D. D. N. Verma and D. R. G. Achar, Welding Journal, Vol.66, pp.147-154, 1987.
    163. W. S. Lee, C.Y. Liu and T. N. Sun, International Journal of Impact Engineering, Vol.32, pp.210-223, 2005.
    164. W. S. Lee, C.Y. Liu and T. N. Sun, Materials Transactions, JIM, Vol.45, No.7, pp.2339-2345, 2004.
    165. W. S. Lee, C.Y. Liu and T. N. Sun, Journal of Materials Processing Technology, Vol.153, pp.219-225, 2004.
    166. H. Hugh and Horowttz, Corrosion, Vol.41, No.2, pp.61-70, 1985.
    167. R. C. Newman, H. S. Issacs and B. Alman, Corrosion, Vol.38, pp.261 -268, 1982.
    168. Z. A. Iofa, Protection Metal, Vol.16, pp.220-226, 1980.
    169. L. Reclaru, R. Lerf, P. Y. Eschler and J. M. Meyer, Biomaterials, Vol.22, pp.269-274, 2001.
    170. I. H. Lo and W. T. Tsai, Material Science Engineering A, Vol.355, pp.137-143, 2003.
    171. M. O. Speidel, Proceedings of International Conference on Stainless Ste- els, Chiba, Japan, ISIJ, Tokyo, pp.25-26, 1991.
    172. C. M. Tseng and W.T. Tsai, Material Chemistry and Physic, Vol.84, pp.162-170, 2004.

    下載圖示 校內:2010-08-30公開
    校外:2010-08-30公開
    QR CODE