簡易檢索 / 詳目顯示

研究生: 王彰鍵
Wang, Chang-Chien
論文名稱: 封閉腔體內之高溫差自然對流研究
Numerical Simulation of Natural Convection in Enclosure with Large Temperature Difference
指導教授: 王振源
Wang, Chen-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 111
中文關鍵詞: 自然對流理想氣體
外文關鍵詞: Rayleigh Benard, PISO, Ideal gas, Boussinesq fluid
相關次數: 點閱:89下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究是封閉腔體內之高溫差自然對流。在左右腔壁溫差的方形腔體,以Boussinesq流體與理想氣體流體作模擬,當使用Boussinesq流體模擬時,等溫線與流線呈左右反對稱,在冷熱壁面的溫度梯度相等。當使用理想氣體流時,於低溫差腔體,冷熱壁面的溫度梯度相等,於高溫差腔體,冷壁面的溫度梯度大於熱壁面的溫度梯度,且高溫差的封閉腔體,壓力隨著腔體內氣體能量增加而升高。在研究中比較相同Ra時,高溫差在冷壁面的溫度梯度大於低溫差在冷壁面的溫線梯度,在熱壁面則相反。高溫差的流線較低溫差的流線偏右下方。

      在Rayleigh-Benard問題,長寬比為25,壓力隨著腔體內的能量增加,直到近似穩態,壓力呈些微的振盪。Ra大於14590時,流場隨著時間改變的暫態現象,其暫態現象是無週期性,旋轉數隨著Ra增加而減少。在Ra=14590時,旋轉數約為12~16個。在Ra=136700時,旋轉數約為8~10個。

      The objective of this thesis is to study natural convection in enclosure with large temperature difference. Comparisons between results with ideal gas and Boussinesq fluid have been made. In the large temperature difference, the isotherms near the cold wall is denser than that in the realm of hot wall. This study focus on comparing the streamline of diverse temperature difference in the same Rayleigh number. The streamline moves toward the direction of cold wall, and the rolls change the form when increasing the temperature difference of left-right wall.

      The other topic is Rayleigh-Benard problem. The pressure increases with the energy of the air of cavity, until quasi-steady the amplitude of the pressure with time is small. In this research aspect ratio is 25, the stream of cavity which has no period, changes with time. The numbers of rolls decrease with increasing Rayleigh number. When the temperature difference is 1000K, the difference of Nusselt number in the realm of cold wall is twice of that in the realm of hot wall, that stand for the different temperature gradient in the realm of wall.

    中文摘要 ………………………………… i 英文摘要 …………………………………ii 致謝 …………………………………… iii 表目錄 ………………………………… vii 圖目錄 …………………………………viii 符號表 ……………………………………xi 1 導論 1.1簡介 ……………………………………1 1.2文獻回顧 ………………………………1 1.2.1封閉腔體內自然對流研究 …………1 1.2.2 Rayleigh-Benard convection … 2 1.2.3 數值方法 ………………………… 4 1.3本文概述 …………………………… 5 2 數學與物理模式 2.1基本假設 …………………………… 6 2.2統御方程式 ………………………… 6 2.3 Boussinesq approximation ……… 7 2.4理想氣體模式 ……………………… 8 2.5熱性質分析 ………………………… 9 3 數值方法 3.1 PISO演算步驟 ………………………10 3.2數值演算法 ………………………… 12 3.3壓力項處理方法 …………………… 13 3.4格點系統及測試 …………………… 14 3.5邊界條件 …………………………… 15 3.6收斂標準 …………………………… 15 4 結果與討論 4.1左右溫差的二維方形腔體 ………… 16 4.1.1 溫差10K與100K之流線 ……… 16 4.1.2 溫差10K與100K之等溫線 …… 17 4.1.3 溫差1000K之流線圖與等溫線圖 18 4.1.4 速度於腔體中央的分佈 …………18 4.1.5 Boussinesq流體與理想氣體流體之 數據 ………………………………………19 4.1.6 總結……………………………… 21 4.2 Rayleigh-Benard對流 22 4.2.1 臨界Rayleigh number ………… 22 4.2.2 Ra=14590時Nu隨時間關係 …… 22 4.2.3 在Ra=14590時之等溫線與速度向量 ………………………………………… 23 4.2.4 在Ra=14590時之Nu與溫度曲面 …24 4.2.5 Ra=136700時Nu隨時間關係 …… 25 4.2.6 在Ra=136700時之等溫線與速度向量 …………………………………………… 26 4.2.7 在Ra=136700時之Nu與溫度曲面 27 4.2.8 溫差1000K之理想氣體流體 …… 28 5 結論 參考文獻 32

    [1] J.P. Abraham and E.M. Sparrow, “Three-dimensional lamminar and turbulent natural convection in a continuously/discretely wall heated enclosure containing a thermal load,”Numerical Heat Transfer, part A, Vol. 44, pp. 105-125, 2003.

    [2] I.E. Barton, “Comparison of SIMPLE- and PISO-type algorithms for transient flows,” International Jounal for Numerical Methods in Fluids, Vol. 26, pp. 459-483, 1998.

    [3] B.A. Befrui and A.D. Gosman, “EPISO-An implicit non-iterative solution procedure for the calculation of flows in reciprocating engine chambers,” Computer Methods in Applied Mechanics and Engineering, Vol. 79, pp. 279-279, 1990.

    [4] R.L. Burden and J.D. Faires, Numerical Analysis, seventh edition, Brooks Cole, 2001.

    [5] C.H. Cheng and K.S. Hung, “Numerical predictions of flow and thermal fields in a reciprocating piston-cylinder assembly,” Numerical Heat Transfer, Part A. Vol. 38, pp. 397-421, 2000.

    [6] G. De Vahl Davis, “Natural convection of air in a square cavity: A bench mark numerical solution,” International Journal for Numerical Methods in Fluids, Vol. 3, pp. 249-264, 1983.

    [7] B. Gebhart, Y. Jaluria, R.L. Mahajan, and B. Sammakia, Buoyancy-induced Flows and Transport, Hemisphere, 1988.

    [8] D.D. Gray and A. Giorgini, “The validity of the Boussinesq approxination for liquids and gas,” International Journal of Heat and Mass Transfer, Vol. 19, pp. 545-551, 1976.

    [9] M. Hortmann and M. Peric and G. Scheuerer, “Finite volume multigrid prediction of laminar natural convection,” International Journal for Numerical Method in Fluid, Vol. 11, 189-207, 1990.

    [10] K.S. Hung and C.H. Cheng, “Pressure effects on natural convection for non-Boussinesq fluid in a rectangular enclosure,” Numerical Heat Transfer, Part A, Vol. 41, pp. 515-528, 2002.

    [11] C.Y. Han and S.W. Back, “The effects of radiation on natural convection in rectangular enclosure divided bt two partitions,” Numerical Heat Transfer, part A, Vol. 37, pp. 249-270, 2000.

    [12] K.G.T. Hollands and G.D. Raithby, Handbook of Heat Transfer Fundamentals, McGraw-Hill, New York, 1985.

    [13] R.I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting,” Journal of Computational Physics, Vol. 62, pp. 40-65, 1984.

    [14] S. Kakac and Y. Yener, Convective Heat Transfer, Second edition, CRC Press, Boca Raton, 1995.

    [15] S.L. Lee and R.Y. Tzong, “Artificial pressure for preesure-link equation,” International Journal of Heat and Mass Transfer, Vol. 35, No.10, pp.2705-2716, 1992.

    [16] D. Mukutmoni and K.T. Yang, “Thermal convection in small enclosures : an atypical bifurcation sequence,” International Journal of Heat and Mass Transfer, Vol. 38, pp. 113-126, 1995.

    [17] D. Mukutmoni and K.T. Yang, “Pattern selection for Rayleigh-Benard convection in intermediate aspect ratio boxes,” Numerical Heat Transfer, Part A, Vol. 27, pp. 621-637, 1995.

    [18] D. Mishra, K. Muralidhar, P. Munshi, “Experimental study of Rayleigh-Benard convection at intermediate Rayleigh numbers using interferometric tomopraphy,” Fluid Dynamics Research, Vol. 25, pp. 231-255, 1999.

    [19] P.J. Oliveira and R.I. Issa, “An improved PISO algorithms for the computation of bouyancy-driven flows,” Numerical Heat Transfer, Part B, Vol. 40, pp. 473-493, 2001.

    [20] S. Ostrach, “Natural convection in enclosure,” Advances in Heat Transfer, Vol. 8, pp. 161-226, 1972.

    [21] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 1980.

    [22] E.M. Sparrow and J.P. Abraham, “A new buoyancy model replacing the standard pseudo-density difference for internal natural convection in gas,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 3583-3591, 2003.

    下載圖示 校內:立即公開
    校外:2004-07-08公開
    QR CODE