| 研究生: |
顏毓宏 Yen, Yu-Hong |
|---|---|
| 論文名稱: |
智慧型脊椎手術導航流程與訓練系統之研發 Development of Intelligent Navigation Workflow and Training for Spinal Surgery |
| 指導教授: |
方晶晶
Fang, Jing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 訓練系統 、脊椎手術 |
| 外文關鍵詞: | Spinal Surgery |
| 相關次數: | 點閱:82 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展一套智慧型脊椎手術導航流程以及電腦輔助椎足鑽孔導引訓練系統,經由數位X光機取得腰椎人工假骨頭(Sawbone)之Biplane(AP/Lat.)影像,經影像失真校正與對正建立雙影像間的座標關係,再導入三維座標量測儀整合實物與影像系統座標轉換。本研究同時提供專業醫師以滑鼠於AP與Lat.影像上繪製二維安全區域,以建立代表椎足鑽孔通道之三維安全區塊,住院醫師便可根據影像上展示的三維安全區域,以量測儀探針對應引導設定椎足安全鑽孔方位,根據專業醫師所定義探針進與出區域的數個等級以評定受訓成果,加以記錄並輸出。
本研究結合相機校正、影像處理與對正等技術,經由空間幾何的圖學技術於軟體上即時展現導引設備的方位資訊,提供醫師直覺化的3D空間資訊介面。此系統為臨床應用之先導性研究,相同流程可分別套用在胸椎及腰椎的訓練使用,未來其完整流程將可直接轉移至臨床上使用。
In this research, we developed an intelligent navigation workflow and computer-aided training system for pedicle screw implantation in spinal surgery. Base on the biplane X-ray imaging of a lumbar saw bone, spatial coordinate correlations between the physical saw bone and the 3D digitizer built an off-line training environment. A senior spine surgeon sketched 2D safety areas on biplane images to be projective intersection to generate 3D safety zones for pedicle insertion. The physicians are able to operate a 3D digitizer to set pedicle drilling position and orientation on saw bones in which 3D visualization is associated to the safety zones. Grading levels were preset by the senior spine surgeon to represent the test results of pedicle screw implantation.
The techniques developed in this system involve X-ray imaging rectification, registration, image processing, imaging dilation and erosion, bi-plane calibration, and spatial geometric transformation, which will be a pioneer study of further clinical applications. The same principles of pedicle insertion can be applied to either thoracic or lumbar spine.
[1] 蔡諄樺,“脊椎手術輔助訓練系統設計與製作”,國立成功大學機械工程所碩士論文,2004年。
[2] Langlotz Frank,“Potential pitfalls of computer aided orthopedic surgery,” Injury 35:S-A17-S-A23, 2004.
[3] DiGioia A.M., et al., “Computer-assisted orthopedic surgery, robotics and navigation : What have we learned?” Orthopedics Today September 2003,
http://www.slackinc.com/bone/ortoday/200309/caos.asp.
[4] Yaniv, Z., Joskowicz, L., Simkin, A., et al., “Fluoroscopic image processing for computer-aided orthopaedic surgery,” Medical Image Computing and Computer-Assisted Intervention, pp. 325-334, 1998.
[5] Yaniv, Z., Sadowsky, O. and Joskowicz, L., “In-vitro accuracy study of contact and image-based registration: materials, methods, and experimental results,” Computer Assisted Radiology and Surgery, pp. 141-146, 2000.
[6] Nolte, L.P., Slomczykowski, M. and Hofstetter, R., et. al., “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Computer Aided Surgery, Vol. 4, Iss. 2, pp. 65-76, 1999.
[7] Nolte, L.P., Slomczykowski, M.A. and Berlemann, U., et. al., “A new approach to computer-aided spine surgery: fluoroscopy-based surgical navigation,” Eur Spine J9 (Suppl 1) :S78–S88, 2000.
[8] 王舜民,“骨科手術用C-arm影像輔助規劃及導引系統” ,國立中央大學機械工程所碩士論文,2002年。
[9] Martins, H.A., Birk J.R., and Kelley, R.B., “Camera models based on data from two calibration, planes,” Computer Graphics and Image Processing, Vol. 17, pp. 173-180, 1981.
[10] Gruen, A. and Huang, T.S., “Calibration and orientation of cameras in computer vision,” Springer-Verlag Berlin Heidelberg. 2001.
[11] Hartley, R.I. and Saxena, T., “The Cubic Rational Polynomial Camera Model,” DARPA, pp. 649-654, 1997.
[12] Reinhard, K., Karsten, S. and Andreas, K., “Computer vision three-dimensional data from images”, Springer-Verlag, Singapore Pte. Ltd. 1998.
[13] Tsai, R.Y., “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, pp. 323 - 344, Aug. 1987.
[14] Tsai, R.Y. and Lenz, R.K., “Technique for calibration of the scale factor and image center for high accuracy 3-D machine vision metrology,” IEEE transactions on pattern analysis and machine intelligence, Vol. 10, No. 5, Sep. 1988.
[15] Fahrig, R., Moreau, M. and Holdsworth, D.W., “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: correction of image intensifier distortion,” Medical Physics, Vol. 24, No. 7, pp. 1097-1106, 1997.
[16] Zitova, B. and Flusser, J., “Image registration methods a survey,” Image and Vision Computing, Vol. 21, pp. 977–1000, 2003.
[17] Gaines, R.W., “The use of pedicle-screw internal fixation for the operative treatment of spinal disorders,” J Bone Joint Surg 82-A; 10:1458-76, 2000.
[18] Brantigan, J.W., Steffee, A.D., Lewis, M.L., Quinn, L.M., “Lumbar interbody fusion using the brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system,” Spine 25; 11:1437-46, 2000.
[19] Xu, R., Ebraheim, N.A., Ou, Y., Yeasting, R.A., “Anatomic considerations of pedicle screw placement in the thoracic spine,” Spine 23; 9:1065-8, 1998.
[20] Liljenqvist, U.R., Halm, H.F.H., Link, T.M., “Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis,” Spine 22; 19:2239-45, 1997.
[21] Jun, B.Y., “Anatomic study for ideal and safe posterior C1-C2 transarticular screw fixation,” Spine 23; 15:1703-7, 1998.
[22] Ludwig, S.C., Kramer, D.L., Balderston, R.A., et al., “Placement of pedicle screws in the human cadaveric cervical spine,” Spine 25; 13:1655-67, 2000.
[23] Weinstein, J.N., Spratt, K.F., Spengler, D., Brick, C., et al., “Spinal pedicle fixation; reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement,” Spine 13; 9:1012-8, 1988.
[24] Boachie-Adkeo, O., Girardi, F.P., Bansal, M., Rawlins, B.A., “Safety and efficacy of pedicle screw placement for adult spinal deformity with a pedicle-probing conventional anatomic technique,” J of Spinal Disorders 13; 6:496-500, 2000.
[25] Rose, R.D., Welch, W.C., Balzer, J.R., Jacovs, G.B., “Persistently electrified pedicle stimulation instruments in spinal instrumentation,” Spine 22; 3:334-43, 1997.
[26] Jou, I.M., Lai, K.A., “Neuromonitoring of an experimental model of clip compression on the spinal nerve root to characterize acute nerve root injury,” Spine 23; 8:932-40, 1998.
[27] Toleikis, J.R., Skelly, J.P., Carlvin, A.O., et al., “The usefulness of electrical stimulation for assessing pedicle screw placements,” J of Spinal Disorders 13; 4:283-9, 2000.
[28] Nolte, L., Zamorano, L., Arm, E., et al., “Image-guided computer-assisted spine surgery; a pilot study on pedicle screw fixation,” Stereotact. And Funct. Meurosurg. 66:108-17, 1996.
[29] Laine, T., Schlenzka, D., Makitalo, K., Tallroth, K., et al., “Improved accuracy of pedicle screw insertion with computer-Assisted surgery,” Spine 22; 11:1254-8, 1997.
[30] Braun, B., http://www.aesculap.com/
[31] BrainLab, http://www.brainlab.com/
[32] Hufner, T., Gebhard, F., Grutzner, P.A., Messmer, P., Stockle, U., Krettek, C., “Which navigation when?” Injury, Vol. 35, Iss. 1, pp. 30-34, 2004.
[33] Yao, J., Taylor, R.H. and Goldberg, R.P., et. al., “A C-Arm fluoroscopy-guided progressive cut refinement strategy using a surgical robot”, Computer Aided Surgery, 5:373–390, 2000.