| 研究生: |
傅維萱 Fu, Wei-Hsuan |
|---|---|
| 論文名稱: |
以非離子型界面活性劑及超臨界二氧化碳萃取檸檬皮精油之研究 Study on Extraction of Essential Oils from Lemon Peels by Mixed Nonionic Surfactants and Supercritical Carbon Dioxide |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 檸檬 、精油 、超臨界流體 、非離子型界面活性劑 、微乳化 |
| 外文關鍵詞: | lemon, essential oils, supercritical fluid extraction, nonionic surfactant, microemulsion |
| 相關次數: | 點閱:209 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生活中常有檸檬香味的添加物,舉凡食物、飲料、美妝及清潔用品中皆可見。現今也已發展許多萃取檸檬精油的方法,但這些方法仍有些無法克服的難處,費時、效率低等,有些萃取方式雖可提升萃取效率,但因使用有機溶劑,反而造成環境的汙染且對人體有害。故本實驗希望可以用食用級的混合非離子型界面活性劑水溶液和超臨界二氧化碳取代有機溶劑來萃取檸檬精油,期能在安全、環保的前提下提升萃取效率和產量。
檸檬精油中約90%為單萜烯類,主要成分為強烈檸檬香氣的d-檸檬烯 (d-limonene),其次為具松樹油味的β-蒎烯 (β-pinene) 以及具柑橘香氣的γ-松油烯 (γ-terpinene),本實驗選擇以上三個成分做為以HPLC定量及定性的目標化合物。混合界劑水溶液萃取結果顯示,界劑水溶液的萃取能力會隨著濃度的降低而下降,且輔以超音波可縮短萃取的時間。超臨界二氧化碳萃取結果顯示當溫度降低、壓力升高時,超臨界二氧化碳的密度增加,溶解度也上升,故產率增加,而當萃取溫壓為35 °C和12 Mpa在本研究中有最佳的萃取產率。本實驗也添加乙醇與非離子型界面活性劑Span 20/PE 64 (1:14)、Span 20、PE 61做為共溶劑來輔助超臨界二氧化碳萃取。實驗結果顯示,加入3克之Span 20可提升目標成分之萃取產率。而比較兩個萃取方式後,以混合界劑水溶液萃取廢棄檸檬皮較易應用於實際生活中。
In this work, lemon essential oils (LEO) were extracted from lemon peels as agriculture wastes by using nonionic microemulsions and supercritical carbon dioxide. Both extraction methods can avoid the usage of organic solvents and contamination in extracted LEO. In the case of microemulsion extraction, the parameters evaluated were solution concentration, extraction time and ultrasonic radiation. Likewise, in supercritical fluid extraction, the parameters were temperature, pressure and cosolvent. Nonionic microemulsions prepared from food-grade surfactants showed that extraction capacity decreased with a decreasing concentration of surfactant, while ultrasonication was introduced to assist the microemulsion extraction process to shorten extraction time. Supercritical fluid extraction showed that the extraction yields increased with a lower process temperature and a higher pressure owing to the fact of an increasing density of supercritical fluid used. As the result, the maximum extraction yield of LEO occurred at 35°C and 12 MPa. Besides, ethanol, Span 20/PE 64 (1:14), Span 20 and PE 61 were chosen as cosolvents. When the amount of Span 20 was 3 g, the wet yield of refined LEO was enhanced to 0.47 mg/ g peel. Comparing these two extraction methods, microemulsion extraction may be more cost effective than the supercritical fluid extraction.
Braunschweig, R.V.; 溫佑君(譯). 精油圖鑑. 城邦文化事業股份有限公司. 2003.
Chrastil, J. Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry. 1982;86:3016-3021.
Davis, P.; 李靖芳(譯). 芳香療法大百科. 2000.
Di Vaio, C.; Graziani, G.; Gaspari, A.; Scaglione, G.; Nocerino, S.; Ritieni, A. Essential oils content and antioxidant properties of peel ethanol extract in 18 lemon cultivars. Scientia Horticulturae. 2010;126(1):50-55.
Drew, M. Surfaces, Interfaces, and Colloids: Principle and Applications. Wiley-VCH. 1999.
Filippi, R.P.D. CO2 as a solvent:Application to fats,oils and other materials. Chemistry and Industry. 1982;19:391-398.
McHugh, M.A.; Krukonis, V.J. Supercritical Fluid Extraction: Principles and Practice. Butterworths. 1986.
Muneo, S.; Yamauchi, Y.; Okuyama, T. Fractionation by Packed-Column SFE and SFC: Principles and Applications. Wiley-VCH. 1994.
Myers, D. Surfactant Science and Technology. 3rd ed. Wiley-Interscience. 2005.
Rahate, A.R.; Nagarkar, J.M. Emulsification of vegetable oils using a blend of nonionic surfactants for cosmetic applications. Journal of Dispersion Science and Technology. 2007;28(7):1077-1080.
Rubingh, D.N.; Holland, P.M. Cationic Surfactants – Physical Chemistry. Surfactant Science Series. 1990;37.
Smith, R.M. Supercritical Fluid Chromatography. Royal Society of Chemistry 1988.
Soontravanich, S.; Walsh, S.; Scamehorn, J.F.; Harwell, J.H.; Sabatini, D.A. Interaction Between an Anionic and an Amphoteric Surfactant. Part II: Precipitation. Journal of Surfactants and Detergents. 2009;12(2):145-154.
Tadros, T.F. Applied Surfactants: Principles and Applications. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim. 2005.
刈米孝夫. 界面活性劑的原理與應用. 高立圖書有限公司. 1989;第3版.
行政院農委會. 農業統計年報 (101年). 農業統計年報. 2013.
易光輝; 王曉芬; 李依蒨. 精油化學基礎與實務應用. 華杏出版股份有限公司. 2008.
凌永健; 李佩玲; 邱郁凱; 殷裕勝. 綠色分析化學. Journal of the Chinese Chemical Society. 2007;65(4):425-437.
桂椿雄. 超臨流體萃取技術之簡介. 化學. 1998;56(4):303-309.
張裕昇. 漫談人工香精. 藥師週刊. 2013 (1834).
陳吉村. 文旦精油之萃取與利用. 花蓮區農業專訊. 2003;45:2-5.
陳亞雷. 澱粉水解酵素於超臨界二氧化碳系統中反應之研究. 國立台灣大學碩士論文. 1998.
黃健政; 張譽穎; 黃英旭; 李欣格; 陳心怡. 乳化劑性質與超音波乳化對台灣數種柑橘類果皮精油製備成O/W乳化物特性與抑菌作用的影響. 行政院國家科學委員會. 2005.
楊顯整. 超臨界綠色技術之概述. 綠基會通訊. 2009:7-11.
廖信昌. 柑桔精油應用於環衛害蟲之防除. 農業世界. 1998;178:60-64.
趙承琛. 界面科學基礎. 復文書局. 1993;第12版.
蔡榮哲. 柑橘類果皮加工利用. 台灣柑橘產業發展研討會專刊. 2005:249-257.
鄭光煒. 超臨界二氧化碳中之相平衡測量及固體溶解度計算. 國立台灣大學博士論文. 2002.
謝博銓. 天然精油的抽提工藝. 科學發展. 2012b;469:10-13.
謝博銓. 花草精靈─精油的奧秘. 科學發展. 2012a (469):6-9.
魏宇晨. 以非離子型界面活性劑萃取檸檬皮精油之研究. 國立成功大學碩士論文. 2012.
羅仁廷. 以混合界面活性劑系統當做疏水性藥物之藥物輸送載體之研究. 國立成功大學碩士論文. 2007.