| 研究生: |
余心仁 Yu, Xin-Ren |
|---|---|
| 論文名稱: |
透過晶圓鍵合技術製備鍺基互補式堆疊電晶體與低溫互補式電晶體之研究 The Study on the Fabrication of Germanium-Based Complementary Stacked Transistors and Cryogenic Temperature Complementary Transistors through Wafer Bonding Technology |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 共同指導: |
李耀仁
Lee, Yao-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 276 |
| 中文關鍵詞: | 互補式堆疊電晶體 、鍺 、晶圓鍵合 、氮氧化鍺 |
| 外文關鍵詞: | CFET, Germanium, wafer bonding, GeON |
| ORCID: | 0009-0001-5075-0294 |
| 相關次數: | 點閱:116 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今的矽基互補式金氧半場效電晶體的技術發展已經面臨瓶頸,元件性能的提升越來越依靠材料與結構方面的進步,如矽鍺以及奈米片的使用。在此基礎之上,3D 堆疊 NMOS-on-PMOS 結構(也稱為 互補式堆疊電晶體,CFET)被提出來取代 FinFET 結構。採用單片或順序3D-IC整合的CFET已被實驗證明可以有效將標準單元尺寸減小多達50%,同時仍保持優異的性能。其中,晶圓鍵合技術被證實是一種可以實現垂直堆疊通道的技術。
在這篇論文中,我們通過晶圓鍵合的方式,製備了高品質的層轉移薄膜與完成了垂直的通道堆疊。晶圓鍵合須滿足足夠低的表面粗糙度,且要求表面具備親水性以實現在低溫下達到高鍵合強度。通過製程的優化,我們提出了兩種有無蝕刻終止層的鍵和製程,其結果可用於八吋晶圓規格。
此外由於鍺沒有穩定的俱生氧化物(GeO2),導致在HKMG結構中容易出現高介面缺陷的情況,限制了Ge基元件的發展。在高溫下,Ge/GeO₂間容易形成低氧化態的一氧化鍺(GeO),一旦GeO 脫附發生,GeO2 會變成不穩定,進而產生嚴重的閘極漏電。然而GeO₂作為介面層的優勢,又使得其幾乎無可替代。在本論文提出使用新型氮化前驅物—聯氨(Hydrazine, N₂H₄),在GeO2的基礎上進行氮化。相較於較常見的氨氣(NH3)氮化處理,N₂H₄無須採用電漿製程,便可達到氮化介面層的效果,因此能有效降低表面損傷。經由電容結構以及材料分析進行驗證,表明N2H4是一種可以在鍺基結構上具備優異電性的新穎介面處理。
另一方面,通過晶圓鍵合技術,我們可以將高品質的鍺層轉移至諸多施主晶圓(host wafer)上,並製備諸如GeOI、異質Ge/Si CFET與異表面取向Ge/Ge CFET。其中透過轉換施主晶圓與供體晶圓(donor wafer)即可透過類似的工藝,將結構從單層結構變換為雙層結構或者多層結構。透過該方法,將施主晶圓從Si基板替換成SOI基板,製備了異質Ge/Si CFET;將施主晶圓從SOI基板替換成(100)表面取向的GeSOI基板,並將供體晶圓替換為(111)表面取向的GeSOI基板,製備了異晶向Ge/Ge CFET,所製備的元件均具備優異的性能。最後,我們針對本篇論文中的元件在低溫下的表現進行了完整的探討。驗證了通過採用層轉移的方式,製備的Ge基元件,具備優異的電晶體特性,標示著鍺基元件在低溫下亦可達到優異的電性。
For the state-of-the-art silicon-based CMOS FETs have reached a bottleneck, and the improvement of device performance increasingly relies on advances in materials and structures, such as the use of silicon germanium and nanosheets (NS) structure. Based on this development, the 3D stacked NMOS-on-PMOS structure (also called complementary stacked transistor, CFET) was proposed to replace the FinFET / NSFET structure. CFETs using monolithic or sequential 3D-IC integration have been experimentally demonstrated to be effective in reducing the standard cell size by up to 50% while still maintaining excellent performance. Among them, wafer bonding technique has been proven to be a emergent method that can achieve vertical stacking structure.
In this dissertation, we fabricated high-quality layer-transferred films and completed vertical channel stacking by wafer bonding. Wafer bonding must meet sufficiently low surface roughness and the surface must be hydrophilic to achieve high bonding strength at low temperatures. Through process optimization, we proposed two methods for bonding processes with and without etching stop layer, and the results can be used for 8-inch wafer specifications.
In addition, since germanium does not have a stable native oxide (GeO2), high interface defects are easily present in the HKMG structure, limiting the development of Ge-based devices. Moreover, low-oxidation germanium monoxide (GeO) is easily formed between Ge/GeO2 at high temperatures. Once GeO desorption occurs, GeO2 becomes unstable, resulting in severe junction leakage. However, the advantages of GeO2 as an interfacial layer make it almost irreplaceable. In this dissertation, we proposes the use of a new nitridation precursor, hydrazine (N2H4), to carry out nitridation based on GeO2. Compared to the more common ammonia (NH3) nitridation treatment, N2H4 can achieve the effect of nitriding the interfacial layer without the plasma process, thus effectively reducing surface damage. Verification through capacitor structure and material analysis shows that N2H4 is an acceptable interfacial treatment that can have excellent electrical characteristics on germanium-based structures.
On the other hand, through wafer bonding technology, we can transfer high-quality germanium layers to many host wafers and prepare GeOI, heterogeneous Ge/Si CFET and hetero-oriented Ge/Ge CFET. By converting the donor wafer and the host wafer, the structure can be changed from a single-layer structure to a double-layer structure or a multi-layer structure through a similar process. Through this method, the donor wafer was replaced from Si substrate to SOI substrate to fabricate heterogeneous Ge/Si CFET; the donor wafer was replaced from SOI substrate to (100)-oriented GeSOI substrate, and the donor wafer was replaced with (111)-oriented GeSOI substrate to fabricate hetero-oriented Ge/Ge CFET. The devices have excellent performance. Finally, we present a complete discussion of the performance of the devices in this dissertation at low temperatures. It was verified that the Ge-based devices fabricated by the layer transfer have excellent transistor properties, indicating that it is possible for germanium-based devices to achieve excellent electrical characteristics at low temperatures.
[1-1] G. E. Moore, “Cramming more components onto integrated circuits, ”Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.
[1-2] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous,and A. R. LeBlanc, “Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of solid-state circuits, vol. 9, no. 5,pp. 256–268, 1974.
[1-3] K. Rupp https://www.karlrupp.net/.
[1-4] E. J. Nowak, “Maintaining the benefits of cmos scaling when scaling bogs down,” IBM Journal of Research and Development, vol. 46, no. 2.3, pp. 169–180, 2002.
[1-5] S. Machkovech, “Intel: ’moore’s law is not dead’ as arc a770 gpu is priced at $329”, https://arstechnica.com/gadgets/2022/09/the-intel-arc-a770-gpu-launches-october-12-for-329/.
[1-6] W. Witkowski, “moore’s law’s dead,’ nvidia ceo jensen huang says in jus-tifying gaming-card price hike”, https://www.marketwatch.com/story/moores-laws-dead-nvidia-ceo-jensen-says-in-justifying-gaming-card-price-hike-11663798618.
[1-7] K. Roy, B. Jung, D. Peroulis, and A. Raghunathan, “Integrated systems in the more-than-moore era: designing low-cost energy-efficient systems using heterogeneous components,” IEEE Design & Test, vol. 33, no. 3, pp. 56–65, 2013.
[1-8] “More moore”, International Roadmap for Devices and Systems™ white paper, 2022.
[1-9] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, et al., “A 10nm high performance and low-power cmos technology featuring 3rd generation finfet transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects,” in 2017 IEEE International Electron Devices Meeting (IEDM), pp. 29–1, IEEE, 2017.
[1-10] X. Wang, R. Kumar, S. B. Prakash, P. Zheng, T.-H. Wu, Q. Shi, M. Nabors, S. C. Gadigatla, S. Realov, C.-H. Chen, et al., “Design-technology co-optimization of standard cell libraries on intel 10nm process,” in 2018 IEEE International Electron Devices Meeting (IEDM), pp. 28–2, IEEE, 2018.
[1-11] G. Yeap, S. Lin, Y. Chen, H. Shang, P. Wang, H. Lin, Y. Peng, J. Sheu, M. Wang, X. Chen, et al., “5nm cmos production technology platform featuring full-fledged euv, and high mobility channel finfets with densest 0.021 μm 2 sram cells for mobile soc and high performance computing applications,” in 2019 IEEE International Electron Devices Meeting (IEDM), pp. 36–7, IEEE, 2019.
[1-12] C.-Y. Huang, G. Dewey, E. Mannebach, A. Phan, P. Morrow, W. Rach- mady, I.-C. Tung, N. Thomas, U. Alaan, R. Paul, et al., “3-d self-aligned stacked nmos-on-pmos nanoribbon transistors for continued moore’s law scaling,” in 2020 IEEE International Electron Devices Meeting (IEDM), pp. 20–6, IEEE, 2020.
[1-13] “More than moore,” International Roadmap for Devices and Systems™ white paper, 2022.
[1-14] G. Zhang, M. Graef, and F. Van Roosmalen, “The rationale and paradigm of” more than moore”,” in 56th Electronic Components and Technology Conference 2006, pp. 7–pp, IEEE, 2006.
[1-15] G. Delagi, “Technology for the next-generation-mobile user experience,” Chips 2020: A Guide to the Future of Nanoelectronics, pp. 273–292, 2012
[1-16] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Finfet-a self-aligned double-gate mosfet scalable to 20 nm,” IEEE transactions on electron devices, vol. 47, no. 12, pp. 2320–2325, 2000.
[1-17] S.-H. Oh, D. Monroe, and J. M. Hergenrother, “Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate mosfets,” IEEE electron device letters, vol. 21, no. 9, pp. 445–447, 2000.
[1-18] D. Jang, D. Yakimets, G. Eneman, P. Schuddinck, M. G. Bardon, P. Raghavan, A. Spessot, D. Verkest, and A. Mocuta, “Device explo- ration of nanosheet transistors for sub-7-nm technology node,” IEEE Transactions on Electron Devices, vol. 64, no. 6, pp. 2707–2713, 2017.
[1-19] S. Jones, “Iedm 2023 – imec cfet,” 2024, https://semiwiki.com/semiconductor-services/340811-iedm-2023-imec- cfet/, 2024.
[1-20] P. Weckx, J. Ryckaert, E. D. Litta, D. Yakimets, P. Matagne, P. Schud- dinck, D. Jang, B. Chehab, R. Baert, M. Gupta, et al., “Novel forksheet device architecture as ultimate logic scaling device towards 2nm,” in 2019 IEEE International Electron Devices Meeting (IEDM), pp. 36–5, IEEE, 2019.
[1-21] J. Ryckaert, P. Schuddinck, P. Weckx, G. Bouche, B. Vincent, J. Smith, Y. Sherazi, A. Mallik, H. Mertens, S. Demuynck, et al., “The comple- mentary fet (cfet) for cmos scaling beyond n3,” in 2018 IEEE Symposium on Vlsi Technology, pp. 141–142, IEEE, 2018.
[1-22] N. Horiguchi, “Nanosheet device architectures to enable cmos scaling in 3nm and beyond: Nanosheet, forksheet and cfet,” IEEE, 2021.
[1-23] D. Ha, “Energy-efficient cmos scaling for 1nm and beyond,” IEEE, 2021.
[1-24] R. Chen, M. Lofrano, G. Mirabelli, G. Sisto, S. Yang, A. Jourdain, F. Schleicher, A. Veloso, O. Zografos, P. Weckx, et al., “Power, performance, area and thermal analysis of 2d and 3d ics at a14 node designed with back-side power delivery network,” in 2022 International Electron Devices Meeting (IEDM), pp. 23–4, IEEE, 2022.
[1-25] B. Aspar, M. Bruel, H. Moriceau, C. Maleville, T. Poumeyrol, A. Papon, A. Claverie, G. Benassayag, A. Auberton-Herv´e, and T. Barge, “Basic mechanisms involved in the smart-cut® process,” Microelectronic Engi- neering, vol. 36, no. 1-4, pp. 233–240, 1997
[1-26] W. Rachmady, A. Agrawal, S. Sung, G. Dewey, S. Chouksey, B. Chu- Kung, G. Elbaz, P. Fischer, C. Huang, K. Jun, et al., “300mm hetero- geneous 3d integration of record performance layer transfer germanium pmos with silicon nmos for low power high performance logic applica- tions,” in 2019 IEEE International Electron Devices Meeting (IEDM), pp. 29–7, IEEE, 2019.
[1-27] S. K. Kim, H.-R. Lim, J. Jeong, S. W. Lee, J. P. Kim, J. Jeong, B. H. Kim, S.-Y. Ahn, Y. Park, D.-M. Geum, et al., “Heterogeneous 3d sequential cfet with ge (110) nanosheet p-fet on si (100) bulk n- fet by direct wafer bonding,” in 2022 International Electron Devices Meeting (IEDM), pp. 20–1, IEEE, 2022.
[1-28] L. Liebmann, J. Smith, D. Chanemougame, and P. Gutwin, “Cfet design options, challenges, and opportunities for 3d integration,” in 2021 IEEE International Electron Devices Meeting (IEDM), pp. 3–1, IEEE, 2021.
[1-29] P. Schuddinck, F. M. Bufler, Y. Xiang, A. Farokhnejad, G. Mirabelli, A. Vandooren, B. Chehab, A. Gupta, C. R. Neve, G. Hellings, et al., “Ppac of sheet-based cfet configurations for 4 track design with 16nm metal pitch,” in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp. 365–366, IEEE, 2022.
[1-30] A. Toriumi and T. Nishimura, “Germanium cmos potential from material and process perspectives: Be more positive about germanium,” Japanese Journal of Applied Physics, vol. 57, no. 1, p. 010101, 2017.
[1-31] K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, and A. Toriumi, “Direct evidence of geo volatilization from geo2/ge and impact of its suppression on geo2/ge metal–insulator–semiconductor characteristics,” Japanese journal of applied physics, vol. 47, no. 4S, p. 2349, 2008.
[1-32] S. K. Wang, K. Kita, C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, and A. Toriumi, “Desorption kinetics of geo from geo2/ge structure,” Journal of applied physics, vol. 108, no. 5, 2010.
[1-33] K. Nagashio, C. Lee, T. Nishimura, K. Kita, and A. Toriumi, “Thermo- dynamics and kinetics for suppression of geo desorption by high pressure oxidation of ge,” MRS Online Proceedings Library (OPL), vol. 1155, pp. 1155–C06, 2009.
[1-34] S. K. Wang, K. Kita, T. Nishimura, K. Nagashio, and A. Toriumi, “Isotope tracing study of geo desorption mechanism from geo2/ge stack using 73ge and 18o,” Japanese Journal of Applied Physics, vol. 50, no. 4S, p. 04DA01, 2011.
[1-35] J. Mitard, C. Shea, B. DeJaeger, A. Pristera, G. Wang, M. Houssa, G. Eneman, G. Hellings, W.-E. Wang, J. Lin, et al., “Impact of eot scaling down to 0.85 nm on 70nm ge-pfets technology with sti,” in 2009 Symposium on VLSI Technology, pp. 82–83, IEEE, 2009.
[1-36] S. Sioncke, W. Vanherle, W. Art, J. Ceuppens, T. Ivanov, D. Lin, L. Nyns, A. Delabie, T. Conard, H. Struyf, et al., “Si cap passivation for ge nmos applications,” Microelectronic engineering, vol. 109, pp. 46–49, 2013.
[1-37] N. Wu, Q. Zhang, C. Zhu, C. C. Yeo, S. Whang, D. Chan, M. Li, B. J. Cho, A. Chin, D.-L. Kwong, et al., “Effect of surface nh 3 anneal on the physical and electrical properties of hfo 2 films on ge substrate,” Applied physics letters, vol. 84, no. 19, pp. 3741–3743, 2004.
[1-38] T. Hosoi, I. Hideshima, R. Tanaka, Y. Minoura, A. Yoshigoe, Y. Teraoka, T. Shimura, and H. Watanabe, “Ge diffusion and bonding state change in metal/high-k/ge gate stacks and its impact on electrical properties,” Microelectronic engineering, vol. 109, pp. 137–141, 2013.
[1-39] S. Ogawa, R. Asahara, Y. Minoura, H. Sako, N. Kawasaki, I. Yamada, T. Miyamoto, T. Hosoi, T. Shimura, and H. Watanabe, “Insights into thermal diffusion of germanium and oxygen atoms in hfo2/geo2/ge gate stacks and their suppressed reaction with atomically thin alox interlayers,” Journal of Applied Physics, vol. 118, no. 23, 2015.
[1-40] R. Asahara, I. Hideshima, H. Oka, Y. Minoura, S. Ogawa, A. Yoshigoe, Y. Teraoka, T. Hosoi, T. Shimura, and H. Watanabe, “Comprehensive study and design of scaled metal/high-k/ge gate stacks with ultrathin aluminum oxide interlayers,” Applied Physics Letters, vol. 106, no. 23, 2015.
[1-41] G. Mavrou, S. Galata, P. Tsipas, A. Sotiropoulos, Y. Panayiotatos, A. Dimoulas, E. Evangelou, J. W. Seo, and C. Dieker, “Electrical properties of la2o3 and hfo2/ la2o3 gate dielectrics for germanium metal- oxide-semiconductor devices,” Journal of Applied Physics, vol. 103, no. 1, 2008.
[1-42] Y. Seo, T. I. Lee, C. M. Yoon, B.-E. Park, W. S. Hwang, H. Kim, H.-Y. Yu, and B. J. Cho, “The impact of an ultrathin y 2 o 3 layer on geo 2 passivation in ge mos gate stacks,” IEEE Transactions on Electron Devices, vol. 64, no. 8, pp. 3303–3307, 2017.
[1-43] D.-B. Ruan, K.-S. Chang-Liao, S.-H. Yi, H.-I. Yeh, and G.-T. Liu, “Low equivalent oxide thickness and leakage current of pge mos device by removing low oxidation state in geox with h2 plasma treatment,” IEEE Electron Device Letters, vol. 41, no. 4, pp. 529–532, 2020.
[1-44] S.-H. Yi, K.-S. Chang-Liao, T.-Y. Wu, C.-W. Hsu, and J. Huang, “High performance ge pmosfets with hfo2/hf-cap/geox gate stack and suitable post metal annealing treatments,” IEEE Electron Device Letters, vol. 38, no. 5, pp. 544–547, 2017.
[1-45] Y.-H. Tsai, C.-H. Chou, A.-S. Shih, Y.-H. Jau, W.-K. Yeh, Y.-H. Lin, F.-H. Ko, and C.-H. Chien, “Improving thermal stability and interface kappa stacksbyincorporatinghf intoaninterf aciallayeronp − germanium,′′ IEEEElectronDeviceLetters, vol. 37, no. 11, pp. 1379− −1382, 2016.
[1-46] G. Copetti, G. V. Soares, and C. Radtke, “Stabilization of the geo2/ge interface by nitrogen incorporation in a one-step no thermal oxynitridation,” ACS applied materials & interfaces, vol. 8, no. 40, pp. 27339–27345, 2016.
[1-47] S.-H. Yi, K.-S. Chang-Liao, C.-W. Hsu, and J. Huang, “Improved electrical characteristics of˜ 0.5 nm eot ge pmosfet with geon interfacial layer formed by nh 3 plasma and microwave annealing treatments,” IEEE Electron Device Letters, vol. 39, no. 9, pp. 1278–1281, 2018.
[1-48] X. Liuyang, G. Xin, Y. Xuze, C. Xiwen, X. Xiaoyu, Q. Zhongliang, and B. Baoxue, “Surface passivation on (100) oriented gaas materials by hy- drazine solution,” in 2015 International Conference on Optoelectronics and Microelectronics (ICOM), pp. 321–323, IEEE, 2015.
[1-49] S. T. Ueda, A. McLeod, D. Alvarez, D. Moser, R. Kanjolia, M. Moinpour, J. Woodruff, and A. C. Kummel, “Tris (dimethylamido) aluminum (iii) and n2h4: Ideal precursors for the low-temperature deposition of large grain, oriented c-axis aln on si via atomic layer annealing,” Applied Surface Science, vol. 554, p. 149656, 2021.
[1-50] M.-S. Yeh, G.-L. Luo, F.-J. Hou, P.-J. Sung, C. Wang, C.-J. Su, C.-T. Wu, Y.-C. Huang, T.-C. Hong, B.-Y. Chen, et al., “Ge finfet cmos inverters with improved channel surface roughness by using in-situ ald digital o 3 treatment,” IEEE Journal of the Electron Devices Society, vol. 6, pp. 1227–1232, 201
[2-1] T. Suni, Direct wafer bonding for MEMS and microelectronics. VTT Technical Research Centre of Finland, 2006.
[2-2] T. Martini, J. Steinkirchner, and U. G¨osele, “The crack opening method in silicon wafer bonding: How useful is it?,” Journal of the Electro- chemical Society, vol. 144, no. 1, p. 354, 1997.
[2-3] Q.-Y. Tong and U. M. G¨osele, “Wafer bonding and layer splitting for microsystems,” Advanced Materials, vol. 11, no. 17, pp. 1409–1425, 1999
[2-4] P. Ramm, J. J.-Q. Lu, and M. M. Taklo, Handbook of wafer bonding. John Wiley & Sons, 2012.
[2-5] T. Suni, K. Henttinen, I. Suni, and J. M¨akinen, “Effects of plasma activation on hydrophilic bonding of si and sio2,” Journal of the Electrochemical Society, vol. 149, no. 6, p. G348, 2002.
[2-6] T. Maeda, “Layer transfer technology for heterogeneous material inte- gration,” IEEE, 2020.
[2-7] U. G¨osele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annual review of materials science, vol. 28, no. 1, pp. 215–241, 1998.
[2-8] V. Larrey, G. Mauguen, F. Fournel, D. Radisson, F. Rieutord, C. Morales, C. Bridoux, and H. Moriceau, “Adhesion energy and bonding wave velocity measurements,” ECS Transactions, vol. 75, no. 9, p. 145, 2016.
[2-9] T. Suni, K. Henttinen, I. Suni, and J. M¨akinen, “Effects of plasma activation on hydrophilic bonding of si and sio2,” Journal of the Electrochemical Society, vol. 149, no. 6, p. G348, 2002.
[2-10] K. H. Lee, A. Jandl, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (mocvd) chamber,” Aip Advances, vol. 3, no. 9, 2013.
[2-11] Y. Du, Z. Kong, M. S. Toprak, G. Wang, Y. Miao, B. Xu, J. Yu, B. Li, H. Lin, J. Han, et al., “Investigation of the heteroepitaxial process optimization of ge layers on si (001) by rpcvd,” Nanomaterials, vol. 11, no. 4, p. 928, 2021.
[2-12] K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of ge epitaxial film in a germanium-on-insulator wafer by annealing in oxygen ambient,” APL Materials, vol. 3, no. 1, 2015
[2-13] D. Schmeisser, R. Schnell, A. Bogen, F. Himpsel, D. Rieger, G. Land- gren, and J. Morar, “Surface oxidation states of germanium,” Surface science, vol. 172, no. 2, pp. 455–465, 1986.
[2-14] E. H. Nicollian and J. R. Brews, MOS (metal oxide semiconductor) physics and technology. John Wiley & Sons, 2002.
[2-15] E. Nicollian and A. Goetzberger, “The si-sio, interface–electrical proper- ties as determined by the metal-insulator-silicon conductance technique,” The Bell System Technical Journal, vol. 46, no. 6, pp. 1055–1033, 1967.
[2-16] L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Elec- tronics, vol. 5, no. 5, pp. 285–299, 1962.
[2-17] S. Pandey and S. Kal, “A simple approach to the capacitance technique for determination of interface state density of a metal–semiconductor contact,” Solid-State Electronics, vol. 42, no. 6, pp. 943–949, 1998.
[2-18] K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, et al., “On the correct extraction of interface trap density of mos devices with high-mobility semiconductor substrates,” IEEE Transactions on Electron Devices, vol. 55, no. 2, pp. 547–556, 2008.
[2-19] G. Brammertz, H. Lin, K. Martens, D. Mercier, C. Merckling, J. Pe- naud, C. Adelmann, S. Sioncke, W.-E. Wang, M. Caymax, et al., “Capacitance–voltage characterization of gaas–oxide interfaces,” Journal of the Electrochemical Society, vol. 155, no. 12, p. H945, 2008.
[2-20] J. Seo and C. Shin, “Experimental study of interface traps in mos capacitor with al-doped hfo2,” Semiconductor Science and Technology, vol. 35, no. 8, p. 085029, 2020.
[2-21] C. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, “Record-high electron mobility in ge n-mosfets exceeding si univer- sality,” in 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–4, IEEE, 2009.
[3-1] J. Cai, “Cmos device technology for the next decade,” IEEE, 2021.
[3-2] Y.-K. Choi, K. Asano, N. Lindert, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Ultra-thin body soi mosfet for deep-sub-tenth micron era,” in International Electron Devices Meeting 1999. Technical Digest (Cat. No. 99CH36318), pp. 919–921, IEEE, 1999.
[3-3] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Finfet-a self-aligned double-gate mosfet scalable to 20 nm,” IEEE transactions on electron devices, vol. 47, no. 12, pp. 2320–2325, 2000.
[3-4] N. Singh, A. Agarwal, L. Bera, T. Liow, R. Yang, S. Rustagi, C. Tung, R. Kumar, G. Lo, N. Balasubramanian, et al., “High-performance fully depleted silicon nanowire (diameter/spl les/5 nm) gate-all-around cmos devices,” IEEE Electron Device Letters, vol. 27, no. 5, pp. 383–386, 2006
[3-5] A. Nowbahari, A. Roy, and L. Marchetti, “Junctionless transistors: State- of-the-art,” Electronics, vol. 9, no. 7, p. 1174, 2020.
[3-6] J.-P. Colinge, C.-W. Lee, N. Dehdashti Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, and R. Yu, “Junctionless transistors: physics and properties,” Semiconductor-on-insulator materials for nanoelectronics applications, pp. 187–200, 2011.
[3-7] S.-J. Choi, D.-I. Moon, S. Kim, J. P. Duarte, and Y.-K. Choi, “Sensi- tivity of threshold voltage to nanowire width variation in junctionless transistors,” IEEE Electron Device Letters, vol. 32, no. 2, pp. 125–127, 2010
[3-8] W. Rachmady, A. Agrawal, S. Sung, G. Dewey, S. Chouksey, B. Chu- Kung, G. Elbaz, P. Fischer, C. Huang, K. Jun, et al., “300mm hetero- geneous 3d integration of record performance layer transfer germanium pmos with silicon nmos for low power high performance logic applica- tions,” in 2019 IEEE International Electron Devices Meeting (IEDM), pp. 29–7, IEEE, 2019.
[3-9] C.-T. Tu, Y.-C. Liu, B.-W. Huang, Y.-R. Chen, W.-H. Hsieh, C.-E. Tsai, S.-J. Chueh, C.-Y. Cheng, Y. Ma, and C. Liu, “First demonstration of monolithic 3d self-aligned gesi channel and common gate complemen- tary fets by cvd epitaxy using multiple p/n junction isolation,” in 2022 International Electron Devices Meeting (IEDM), pp. 20–3, IEEE, 2022.
[3-10] S. Demuynck, V. V. Gonzalez, C. T. de Carvalho Cavalcante, L. Lima, K. Stiers, C. Sheng, A. Vandooren, M. Hosseini, X. Zhou, H. Mertens, et al., “Monolithic complementary field effect transistors (cfet) demon- strated using middle dielectric isolation and stacked contacts,” in 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp. 1–2, IEEE, 2024.
[3-11] M. Radosavljevi´c, C.-Y. Huang, R. Galatage, M. Qayyum, J. Wiedemer, E. Clinton, D. Bennett, H. Ryu, N. Thomas, P. Morrow, et al., “Demon- stration of a stacked cmos inverter at 60nm gate pitch with power via and direct backside device contacts,” in 2023 International Electron Devices Meeting (IEDM), pp. 1–4, IEEE, 2023.
[3-12] J. Park, W. Kim, S. Park, J. Yun, K. Hwang, J. Yang, D. Kim, J. W. Jeong, C. Yun, J. Bae, et al., “First demonstration of 3-dimensional stacked fet with top/bottom source-drain isolation and stacked n/p metal gate,” in 2023 International Electron Devices Meeting (IEDM), pp. 1–4, IEEE, 2023.
[4-1] S. Kasap and P. Capper, Springer handbook of electronic and photonic materials. Springer, 2017.
[4-2] C. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, “Record-high electron mobility in ge n-mosfets exceeding si univer- sality,” in 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–4, IEEE, 2009.
[4-3] S. Takagi and M. Takenaka, “Physical origin of drive current enhance- ment in ultrathin ge-on-insulator n-channel metal–oxide–semiconductor field-effect transistors under full ballistic transport,” Japanese Journal of Applied Physics, vol. 50, no. 1R, p. 010110, 2011.
[4-4] X. Yu, J. Kang, M. Takenaka, and S. Takagi, “Experimental study on carrier transport properties in extremely-thin body ge-on-insulator (goi) p-mosfets with goi thickness down to 2 nm,” in 2015 IEEE International Electron Devices Meeting (IEDM), pp. 2–2, IEEE, 2015.
[4-5] X. Yu, J. Kang, R. Zhang, W.-L. Cai, M. Takenaka, and S. Takagi, “Impact of back interface passivation on electrical properties of ultrathin- body germanium-on-insulator (geoi) mosfets,” Microelectronic Engi- neering, vol. 147, pp. 196–200, 2015.
[4-6] K. Sumita, C.-T. Chen, K. Toprasertpong, M. Takenaka, and S. Takagi, “Optimum channel design of extremely-thin-body nmosfets utilizing anisotropic valley—robust to surface roughness scattering,” IEEE Trans- actions on Electron Devices, vol. 69, no. 4, pp. 2115–2121, 2022.
[4-7] Z. Zhang, “Epitaxial growth optimization for 1.3-um ingaas/gaas vertical-cavity surface-emitting lasers,” Licentiate dissertation, KTH, 2008
[4-8] R. Beanland, D. Dunstan, and P. G. and, “Plastic relaxation and relaxed buffer layers for semiconductor epitaxy,” Advances in Physics, vol. 45, no. 2, pp. 87–146, 1996.
[4-9] E. Fitzgerald, “Dislocations in strained-layer epitaxy: theory, experiment, and applications,” Materials Science Reports, vol. 7, no. 3, pp. 87–142, 1991
[4-10] M. Willander and S. C. Jain, Silicon-germanium strained layers and het- erostructures: semi-conductor and semi-metals series, vol. 74. Elsevier, 2003
[4-11] M. L. Lee, D. A. Antoniadis, and E. A. Fitzgerald, “Challenges in epitaxial growth of sige buffers on si (111), (110), and (112),” Thin Solid Films, vol. 508, no. 1, pp. 136–139, 2006.
[4-12] K. Yu, F. Yang, H. Cong, L. Zhou, Q. Liu, L. Zhang, B. Cheng, C. Xue, Y. Zuo, and C. Li, “Fabrication of high-hole-mobility germanium- on-insulator wafers through an easy method,” Journal of Alloys and Compounds, vol. 750, pp. 182–188, 2018.
[4-13] D. J. Eaglesham and M. Cerullo, “Low-temperature growth of ge on si (100),” Applied physics letters, vol. 58.20, pp. 2276–2278, 1991.
[4-14] D. Choi, Y. Ge, J. S. Harris, J. Cagnon, and S. Stemmer, “Low surface roughness and threading dislocation density ge growth on si (001),” Journal of Crystal Growth, vol. 310, no. 18, pp. 4273–4279, 2008.
[4-15] M. Klinger and A. J¨ager, “Crystallographic Tool Box (CrysTBox): automated tools for transmission electron microscopists and crystallog- raphers,” Journal of Applied Crystallography, vol. 48, no. 6, pp. 2012–2018, 2015.
[4-16] C.-S. Tan, M.-Y. Lu, W.-H. Peng, L.-J. Chen, and M. H. Huang, “Germanium possessing facet-specific trap states and carrier lifetimes,” The Journal of Physical Chemistry C, vol. 124, no. 24, pp. 13304–13309, 2020.
[5-1] IEEE International Roadmap for Devices and Systems.
[5-2] E. Gibney, “Hello quantum world! google publishes landmark quantum supremacy claim,” Nature, vol. 574, no. 7779, pp. 461–463, 2019.
[5-3] J. Russell, “Ibm quantum update: Q system one launch, new collabora- tors, and qc center plans,” HPC Wire, 2019.
[5-4] J. Hsu, “Ces 2018: Intel’s 49-qubit chip shoots for quantum supremacy,” IEEE Spectrum Tech Talk, pp. 1–6, 2018.
[5-5] H. Chiang, T. Chen, J. Wang, S. Mukhopadhyay, W. Lee, C. Chen, W. Khwa, B. Pulicherla, P. Liao, K. Su, et al., “Cold cmos as a power- performance-reliability booster for advanced finfets,” in 2020 IEEE Symposium on VLSI Technology, pp. 1–2, IEEE, 2020.
[5-6] F. Tafuri, Fundamentals and frontiers of the Josephson effect, vol. 286. Springer Nature, 2019.
[5-7] M. Gonzalez-Zalba, S. De Franceschi, E. Charbon, T. Meunier, M. Vinet, and A. Dzurak, “Scaling silicon-based quantum computing using cmos technology,” Nature Electronics, vol. 4, no. 12, pp. 872–884, 2021.
[5-8] R. Saligram, A. Raychowdhury, and S. Datta, “The future is frozen: cryogenic cmos for high-performance computing,” Chip, vol. 3, no. 1, p. 100082, 2024.
[5-9] Y. Han, J. Sun, I. Radu, J. Knoch, D. Gr¨utzmacher, and Q.-T. Zhao, “Improved performance of fdsoi fets at cryogenic temperatures by opti- mizing ion implantation into silicide,” Solid-State Electronics, vol. 208, p. 108733, 2023.
[5-10] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais, and C. Enz, “Physical model of low-temperature to cryogenic threshold voltage in mosfets,” IEEE Journal of the Electron Devices Society, vol. 8, pp. 780–788, 2020.
[5-11] Y. P. Varshni, “Temperature dependence of the energy gap in semicon- ductors,” physica, vol. 34, no. 1, pp. 149–154, 1967.
[5-12] E. Catapano, T. M. Frutuoso, M. Cass´e, and G. Ghibaudo, “On the zero temperature coefficient in cryogenic fd-soi mosfets,” IEEE Transactions on Electron Devices, vol. 70, no. 3, pp. 845–849, 2022.
[5-13] F. S. di Santa Maria, L. Contamin, M. Cass´e, C. Theodorou, F. Balestra, and G. Ghibaudo, “Comprehensive kubo-greenwood modelling of fdsoi mos devices down to deep cryogenic temperatures,” Solid-State Elec- tronics, vol. 192, p. 108271, 2022.
[5-14] F. Gamiz and J. L´opez-Villanueva, “A comparison of models for phonon scattering in silicon inversion layers,” Journal of applied physics, vol. 77, no. 8, pp. 4128–4129, 1995.
[5-15] G. Ghibaudo, “Transport in the inversion layer of a mos transistor: use of kubo-greenwood formalism,” Journal of Physics C: Solid State Physics, vol. 19, no. 5, p. 767, 1986.
[5-16] S. Villa, A. L. Lacaita, L. M. Perron, and R. Bez, “A physically- based model of the effective mobility in heavily-doped n-mosfets,” IEEE Transactions on Electron Devices, vol. 45, no. 1, pp. 110–115, 1998.
[5-17] S. Zhao, G. Yuan, Q. Zhu, L. Song, D. Zhang, Y. Liu, J. Lu, W. Han, and J. Luo, “Cryogenic mobility enhancement in si mos devices via sio 2 regrowth,” IEEE Transactions on Electron Devices, vol. 69, no. 5, pp. 2585–2589, 2022.
[5-18] H. Yang, M. Robitaille, X. Chen, H. Elgabra, L. Wei, and N. Y. Kim, “Random telegraph noise of a 28-nm cryogenic mosfet in the coulomb blockade regime,” IEEE Electron Device Letters, vol. 43, no. 1, pp. 5–8, 2021.
[5-19] H.-C. Han, F. Jazaeri, A. D’Amico, A. Baschirotto, E. Charbon, and C. Enz, “Cryogenic characterization of 16 nm finfet technology for quantum computing,” in ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference (ESSCIRC), pp. 71–74, IEEE, 2021.