| 研究生: |
歐家銓 Ou, Chia-chuan |
|---|---|
| 論文名稱: |
水下載具與工作母船之偶合運動及動態定位之研究 The Study on the Coupled Motions between the Underwater Vehicle and the Supported Vessel with Dynamic Positioning System |
| 指導教授: |
方銘川
Fang, Ming-chung 楊世安 Yang, Shih-An |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 偶合運動 、臍帶電纜 、水下載具 、動態定位 、波浪 |
| 外文關鍵詞: | wave, coupled motions, umbilical cable, underwater vehicle, dynamic position system |
| 相關次數: | 點閱:78 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工作母船與有繫纜水下載具兩者間之動態模式為高度非線性之偶合運動。本文建構一數值模擬程式,深入探討船舶動態定位系統對受電纜拉力影響之水下載具之偶合影響關係,使用四階 方法與多重射擊法,計算在不同海況下波浪力、洋流力及風力作用下對母船之影響與繫纜運動之相互關係,及電纜對水下載具之影響力量作探討分析,並藉由不規則波45度、90度、180度之波向角來討論對系統運動之模式。並加入船舶動態定位系統,探討母船自動控制後與水下載具之偶合運動狀況。
最後藉由運動軌跡圖、六度運動時程模擬圖與繫纜動態模擬圖分析探討,比較母船受波浪、洋流、風及船舶動態定位系統影響,與水下載具受臍帶電纜張力影響後之偶合運動分析。
結果證明,有加裝動態定位系統之工作母船,可有效維持在固定作業範圍內,使水下載具可承受合理之電纜拉力保持運動姿態。本文應用範圍可適用於操控ROV之工作母船或水面工作載台之定位系統操控之預測。
The dynamic coupled motions between the underwater vehicle and supported vessel are highly nonlinear behaviors. The present paper develops a numerical simulation model to analyze the effect of the umbilical cable of the underwater vehicle on the dynamic position system of the supported vessel. The 4th Runge Kutta method and the multi-step shooting method are applied to solve the two-ends boundary value problem between the supported vessel and the underwater vehicle. Different sea states including the wave force, the current force and the wind force are considered and the reaction tension forces of the umbilical cable are also analyzed. The automatic control is also included in equations of motions to investigate the effectiveness of the dynamic position system with respect to the different wave directions at 45o, 90o, and 180o. From the present results, we find that the numerical model developed here can suitably simulate the dynamic behavior of the supported vessel with the dynamic position system which can be applied to safely operate the control of the underwater remote operated vehicle.
1.Aalbers, A. B. and Nienhuis, U., “Wave Direction Feed-Forward
on Basis of Relative Motion Measurements to Improve
Dynamic Positioning Performance,” Offshore Technology
conference, Paper 5445, pp. 225-232, 1987.
2.Antonio, L., Fossen T. I. and Panteley, E., “A Separation
Principle for Dynamic Positioning of Ships: Theoretical and
Experimental Results,” IEEE Trans. On Control Systems
Technology. Vol. 8, No. 2, pp. 332-343, 2000.
3.Arora, Jasbir, S., “Introductin to Optimum Design,” McGraw-
HillBook Company, 1989.
4.Buckham, B., Nahon, M. and Cote, G., “Validation of a Finite
Element Model for Slack ROV Tethers,” IEEE J. Ocean Eng.,
pp. 1129-1136, 2000.
5.Crossland, P. and Johnson, M. C., “A time domain simulation of
deck wetness in head seas,” Proceeding of RINA International
Conference on Ship Motions and Manoeuverability, London, UK,
1998.
6.Deam, W. and Given, D., “ROV Technology Trends and
Forecast,” OCEANS, Vol. 15, pp. 573-578, 1983.
7.Feng, Z. and Allen, R., “Evaluation of the effects of the
communication cable on the dynamics of an underwater
flight vehicle,” Ocean Engineering 31 , pp. 1019–1035, 2004.
8.Grimble, M. J., Patton, R. J. and Wise, D. A., “The Design of
Dynamic Ship Positioning Control Systems Using Extended
Kalman Filtering Technique,” IEEE Oceans Conference,
pp. 488-497, 1979.
9.Hamamoto, M. and Kim, Y. S., “A new coordinate system and
the equations describing maneuvering motion of a ship in
waves (in Japanese),” Journal of the Society of Naval
Architects of Japan, Vol. 173, pp. 209-220, 1993.
10.Hamamoto, M., Matsuda, A. and Ise, Y., “Ship motion and
the dangerous zone of a ship in severe following seas (in
Japanese),” Journal of the Society of Naval Architects of
Japan, Vol. 175, pp. 69-78, 1994.
11.Hirano, M., Takashina, J., Takashi, Y. and Saruta, T., “Ship
turingtrajectory in regular waves,” Trans. West-Japan Soc. Nav.
Archit., No. 60 , 1980.
12.Inoue, S., Hirano, M., Kijima, K. and Takashina, J., “Apractical
Calculation method of ship maneuvering motion,” International
Shipbuilding Progress, Vol. 28, pp. 207-222, 1981.
13.Isherwood, R. M., “Wind Resistance of Merchant Ships,”
Transactions of RINA, Vol. 115, pp. 327-338, 1973.
14.Liang, C. C. and Cheng, W. H., “The Optimal Control of
Thruster system for Dynamic Positioned Vessels,” Vol. 31,
pp. 97-110, 2004.
15.Liddle, D., “TROJAN: Remotely Operated Vehicle,” IEEE
Journal of Ocean Eng., Vol. OE-11, No. 3, pp. 364-372, July
1986.
16.Munif, A. and Umeda, N., “Modeling extreme roll motions and
capsizing of a moderate-speed ship in astern waves,”
Journal of the Society of Naval Architects of Japan, Vol. 187,
pp. 51-58, 2000.
17.Nomoto, M. and Hattori, M., “A Deep ROV DOPHIN 3K:
DesignedPerformance Analysis,” IEEE Journal of Ocean
Eng., Vol. OE-11, No. 3, pp. 373-391, July 1986.
18.Stewart, L. L. and Auster, P. J., “Low Cost ROV's for Science,”
OCEANS'89 Proc., Vol. 3, pp. 816-819, 1989.
19.Thatcher, H. H., “RCV-225G, Design and Production of a First
Unit Wellhead Work System,” IEEE J. Ocean Eng., Vol.
OE-11, No.3, pp. 349-357, July 1986.
20.Yongkuan, L., “AUV's Trends over The World in The Future
Decade,” Autonomous Underwater Vehicle Technology,
AUV'92 Proc., pp. 116-127, 1992.
21.朱繼懋,“潛水器設計,”上海交通大學出版社, July 1991。
22.高品純志,港灣域における船の操縱運動計算法に關する研究
(日文),博士論文,東京大學,日本,1992。
23.徐玉樹,順浪中船舶之穩度安全性,國立成功大學造船暨船舶機
械工程研究所碩士論文,民國八十六年。
24.羅志宏,船隻在順波中波向穩定性與運動之分析,國立成功大
學造船暨船舶機械工程研究所碩士論文,民國九十年。
25.侯章祥,臍帶電纜及洋流對潛航器運動之影響,國立成功大學
系統及船舶機電工程學系碩士論文,民國九十四年。
26.陳韻茹,船體繫泊系統之動態模擬,國立成功大學系統及船舶
機電工程學系碩士論文,民國九十五年。
27.台灣船舶網:http://www.ship.org.tw/enewspaper/x-031/
enewship.htm