| 研究生: |
陳冠汝 Chen, Kuan-Ju |
|---|---|
| 論文名稱: |
聚胺酸高分子自組裝誘導中孔二氧化矽之合成及其應用為抗反射薄膜 Polypeptide Macromolecular Assemblies-Induced Synthesis of Mesoporous Silica and Their Application as Antireflective Coatings |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 嵌段聚胺基酸 、奈米纖維 、多孔性二氧化矽 、層層堆疊法 、生物礦化法 、抗反射薄膜 |
| 外文關鍵詞: | polypeptides, mesoporous, layer by layer assembly, anti-reflective film |
| 相關次數: | 點閱:79 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成帶有正電荷之雙嵌段聚胺基酸高分子,聚賴胺酸嵌段聚蘇胺酸(PLL-b-PLT),利用傅立葉轉換紅外線光譜儀以及圓二色光譜儀分析其二級結構,發現此高分子同時具有β-折板及無規則線圈,且利用掃描式電子顯微鏡及穿透式電子顯微鏡等儀器發現在低濃度高分子水溶液中,聚賴胺酸嵌段聚蘇胺酸自組裝形成奈米纖維(nanofibril)結構,在確定此高分子形態後,我們將其作為模板製備出擁有奈米結構的有機/無機複合材料並合成出具有構型之無機氧化物,藉由模板法進行生物仿生的礦化作用,由於雙嵌段聚胺基酸高分子的二級結構是決定孔洞結構和孔隙度的重要因素之一,故可以發現使用不同鏈長之聚賴胺酸嵌段聚蘇胺酸高分子可改變材料形狀、孔隙度和孔洞結構。我們使用一種製程簡單且快速的技術合成出奈米級無機氧化物材料,材料都表現出良好且獨特的特性,能應用於許多相關領域裡。除了應用於合成無機材料外,我們另外將帶正電聚賴胺酸嵌段聚蘇胺酸高分子以及帶負電之聚穀胺酸高分子利用浸泡法結合層層堆疊法的方式,搭配生物礦化法的步驟製備結構為多孔且連續的多孔性抗反射薄膜,並發現藉由控制堆疊層數的不同可調控抗反射薄膜之折射率,除此之外此抗反射薄膜可抵抗膠帶作用力,顯示其有一定機械強度能穩定存在於基材上。此方法製備出來的抗反射薄膜不但能提高基材穿透度,且擁有穩定的貼附性,使其應用性增廣。
In this study, we synthesis polypeptides poly (L-lysine)-block-poly (L-threonine) (PLL-b-PLT) and poly (L-glutamic acid) (PGA) via ring-opening polymerization. And we proposed a simple method to prepare the polypeptide templated mesoporous silica materials which pore sizes mostly between 2~50 nm after calcination. In addition, we exploited a simple method to prepare polymer/silica composite antireflective (AR) films by combining silica mineralization and layer-by-layer (LBL) assembly. The performance of AR films depends on its thickness and fibrous nanostructure. While the AR composite films coated on glass and poly (methyl methacrylate) (PMMA) substrates exhibited maximum transmission over 96% and 97% at the visible wavelength between 570 and 800 nm.
參考文獻
1. Noller, H. F., The parable of the caveman and the Ferrari: protein synthesis and the RNA world. Philos Trans R Soc Lond B Biol Sci 2017, 372 (1716).
2. Nelson, D. L.; Cox, M. M., Lehninger Principles of Biochemistry. W. H. Freeman: 2017.
3. Creighton, T. E., Proteins: Structures and Molecular Properties. W. H. Freeman: 1993.
4. Meyers, R. A., Molecular Biology and Biotechnology: A Comprehensive Desk Reference. Wiley: 1995.
5. Schulz, G. E.; Schirmer, R. H., Principles of Protein Structure. Springer New York: 2013.
6. Carlsen, A.; Lecommandoux, S., Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 2009, 14 (5), 329-339.
7. Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22 (12), 2577-637.
8. Branden, C. I., Introduction to Protein Structure. Taylor & Francis Group: 1999.
9. Merrifield, R. B., Solid Phase Peptide Synthesis. II. The Synthesis of Bradykinin. Journal of the American Chemical Society 1964, 86 (2), 304-305.
10. Cheng, J.; Deming, T. J., Synthesis of polypeptides by ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Top Curr Chem 2012, 310, 1-26.
11. Leuchs, H., Ueber die Glycin-carbonsäure. Berichte der deutschen chemischen Gesellschaft 1906, 39 (1), 857-861.
12. Kricheldorf, H. R., Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angew Chem Int Ed Engl 2006, 45 (35), 5752-84.
13. Huesmann, D.; Birke, A.; Klinker, K.; Türk, S.; Räder, H. J.; Barz, M., Revisiting Secondary Structures in NCA Polymerization: Influences on the Analysis of Protected Polylysines. Macromolecules 2014, 47 (3), 928-936.
14. Hehir, S.; Cameron, N. R., Recent advances in drug delivery systems based on polypeptides prepared fromN-carboxyanhydrides. Polymer International 2014, 63 (6), 943-954.
15. Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G., Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem Rev 2009, 109 (11), 5528-78.
16. He, X.; Fan, J.; Wooley, K. L., Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from alpha-Amino Acid N-Carboxyanhydride (NCA) Polymerizations. Chem Asian J 2016, 11 (4), 437-47.
17. Wei, Z.; Zhu, S.; Zhao, H., Brush macromolecules with thermo-sensitive coil backbones and pendant polypeptide side chains: synthesis, self-assembly and functionalization. Polymer Chemistry 2015, 6 (8), 1316-1324.
18. Ulkoski, D.; Meister, A.; Busse, K.; Kressler, J.; Scholz, C., Synthesis and structure formation of block copolymers of poly(ethylene glycol) with homopolymers and copolymers of l-glutamic acid γ-benzyl ester and l-leucine in water. Colloid and Polymer Science 2015, 293 (8), 2147-2155.
19. Wibowo, S. H.; Sulistio, A.; Wong, E. H. H.; Blencowe, A.; Qiao, G. G., Functional and Well-Definedβ-Sheet-Assembled Porous Spherical Shells by Surface-Guided Peptide Formation. Advanced Functional Materials 2015, 25 (21), 3147-3156.
20. Lu, Y.; Ngo Ndjock Mbong, G.; Liu, P.; Chan, C.; Cai, Z.; Weinrich, D.; Boyle, A. J.; Reilly, R. M.; Winnik, M. A., Synthesis of polyglutamide-based metal-chelating polymers and their site-specific conjugation to trastuzumab for auger electron radioimmunotherapy. Biomacromolecules 2014, 15 (6), 2027-37.
21. Daly, W. H.; Poché, D., The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate. Tetrahedron Letters 1988, 29 (46), 5859-5862.
22. Poché, D. S.; Moore, M. J.; Bowles, J. L., An Unconventional Method for Purifying the N-carboxyanhydride Derivatives of γ-alkyl-L-glutamates. Synthetic Communications 1999, 29 (5), 843-854.
23. Deming, T. J., Living polymerization of α-amino acid-N-carboxyanhydrides. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38 (17), 3011-3018.
24. Cha, J. N.; Stucky, G. D.; Morse, D. E.; Deming, T. J., Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 2000, 403 (6767), 289-92.
25. Yuan, J. J.; Mykhaylyk, O. O.; Ryan, A. J.; Armes, S. P., Cross-linking of cationic block copolymer micelles by silica deposition. J Am Chem Soc 2007, 129 (6), 1717-23.
26. Tomczak, M. M.; Glawe, D. D.; Drummy, L. F.; Lawrence, C. G.; Stone, M. O.; Perry, C. C.; Pochan, D. J.; Deming, T. J.; Naik, R. R., Polypeptide-templated synthesis of hexagonal silica platelets. J Am Chem Soc 2005, 127 (36), 12577-82.
27. Meegan, J. E.; Aggeli, A.; Boden, N.; Brydson, R.; Brown, A. P.; Carrick, L.; Brough, A. R.; Hussain, A.; Ansell, R. J., Designed Self-Assembledβ-Sheet Peptide Fibrils as Templates for Silica Nanotubes. Advanced Functional Materials 2004, 14 (1), 31-37.
28. Kessel, S.; Thomas, A.; Borner, H. G., Mimicking biosilicification: programmed coassembly of peptide-polymer nanotapes and silica. Angew Chem Int Ed Engl 2007, 46 (47), 9023-6.
29. Iler, R. K.;The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. Wiley: 1979.
30. Sanchez, C.; Ribot, F.; Lebeau, B., Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. Journal of Materials Chemistry 1999, 9 (1), 35-44.
31. Bernards, T. N. M.; van Bommel, M. J.; Boonstra, A. H., Hydrolysis-condensation processes of the tetra-alkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents. Journal of Non-Crystalline Solids 1991, 134 (1-2), 1-13.
32. Kim, K. D.; Kim, H. T., New process for the preparation of monodispersed, spherical silica particles. 2002; Vol. 85, p 1107-1113.
33. McBain, J. W., The Sorption of Gases and Vapours by Solids. G. Routledge & sons, Limited: 1932.
34. Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H., A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature 1991, 352 (6333), 320-323.
35. Martin, C. R., Membrane-Based Synthesis of Nanomaterials. Chemistry of Materials 1996, 8 (8), 1739-1746.
36. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354 (6348), 56-58.
37. Parthasarathy, R. V.; Martin, C. R., Template-Synthesized Polyaniline Microtubules. Chemistry of Materials 1994, 6 (10), 1627-1632.
38. Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U., Polymer nanotubes by wetting of ordered porous templates. Science 2002, 296 (5575), 1997.
39. Aleshin, A. N., Polymer Nanofibers and Nanotubes: Charge Transport and Device Applications. Advanced Materials 2006, 18 (1), 17-27.
40. Nishizawa, M.; Menon, V. P.; Martin, C. R., Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 1995, 268 (5211), 700-2.
41. Sanchez-Castillo, M. A.; Couto, C.; Kim, W. B.; Dumesic, J. A., Gold-nanotube membranes for the oxidation of CO at gas-water interfaces. Angew Chem Int Ed Engl 2004, 43 (9), 1140-2.
42. Hoyer, P., Semiconductor nanotube formation by a two-step template process. Advanced Materials 1996, 8 (10), 857-&.
43. Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R., Sol−Gel Template Synthesis of Semiconductor Nanostructures. Chemistry of Materials 1997, 9 (3), 857-862.
44. Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C., Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials 2006, 18 (21), 2807-2824.
45. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18 (6).
46. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Titania Nanotubes Prepared by Chemical Processing. Advanced Materials 1999, 11 (15), 1307-1311.
47. Li, D.; Xia, Y., Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials 2004, 16 (14), 1151-1170.
48. Shin, H. C.; Dong, J.; Liu, M. L., Nanoporous structures prepared by an electrochemical deposition process. Advanced Materials 2003, 15 (19), 1610-+.
49. Zhou, Y.; Schattka, J. H.; Antonietti, M., Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol−Gel Nanocasting Technique. Nano Letters 2004, 4 (3), 477-481.
50. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412 (6843), 169-72.
51. Gao, Y.; Nagai, M.; Seo, W.-S.; Koumoto, K., Template-Free Self-Assembly of a Nanoporous TiO2 Thin Film. Journal of the American Ceramic Society 2007, 90 (3), 831-837.
52. Qiu, P.; Mao, C., Biomimetic branched hollow fibers templated by self-assembled fibrous polyvinylpyrrolidone structures in aqueous solution. ACS Nano 2010, 4 (3), 1573-9.
53. Bachmann, J.; Jing, J.; Knez, M.; Barth, S.; Shen, H.; Mathur, S.; Gosele, U.; Nielsch, K., Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J Am Chem Soc 2007, 129 (31), 9554-5.
54. Bae, C.; Yoo, H.; Kim, S.; Lee, K.; Kim, J.; Sung, M. M.; Shin, H., Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications. Chemistry of Materials 2008, 20 (3), 756-767.
55. Gebeshuber, I. C.; Drack, M., An attempt to reveal synergies between biology and mechanical engineering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2008, 222 (7), 1281-1287.
56. Decher, G.; Hong, J. D., Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: II. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles and Polyelectrolytes on Charged Surfaces. Berichte der Bunsengesellschaft für physikalische Chemie 1991, 95 (11), 1430-1434.
57. Caruso, F., Nanoengineering of Particle Surfaces. Advanced Materials 2001, 13 (1), 11-22.
58. Lutkenhaus, J. L.; Hrabak, K. D.; McEnnis, K.; Hammond, P. T., Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies. J Am Chem Soc 2005, 127 (49), 17228-34.
59. Schlenoff, J. B.; Dubas, S. T.; Farhat, T., Sprayed Polyelectrolyte Multilayers. Langmuir 2000, 16 (26), 9968-9969.
60. Li, Y.; Wang, X.; Sun, J., Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev 2012, 41 (18), 5998-6009.
61. Elbakry, A.; Wurster, E. C.; Zaky, A.; Liebl, R.; Schindler, E.; Bauer-Kreisel, P.; Blunk, T.; Rachel, R.; Goepferich, A.; Breunig, M., Layer-by-layer coated gold nanoparticles: size-dependent delivery of DNA into cells. Small 2012, 8 (24), 3847-56.
62. Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277 (5330), 1232-1237.
63. Mamedov, A. A.; Kotov, N. A., Free-Standing Layer-by-Layer Assembled Films of Magnetite Nanoparticles. Langmuir 2000, 16 (13), 5530-5533.
64. Shchukin, D. G.; Kohler, K.; Mohwald, H.; Sukhorukov, G. B., Gas-filled polyelectrolyte capsules. Angew Chem Int Ed Engl 2005, 44 (21), 3310-4.
65. Donath, E.; Sukhorukov, G. B.; Caruso, F.; Davis, S. A.; Möhwald, H., Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angewandte Chemie International Edition 1998, 37 (16), 2201-2205.
66. Rayleigh, L., On Reflection of Vibrations at the Confines of two Media between which the Transition is Gradual. Proceedings of the London Mathematical Society 1879, s1-11 (1), 51-56.
67. BORN, M.; WOLF, E., PRINCIPLES OF OPTICS ELECTROMAGNETIC THEORY OF PROPAGATION INTERFERENCE AND DIFFRACTION OF LIGHT. Pergamon Press: 1975.
68. Macleod, H. A., Thin-Film Optical Filters, Fifth Edition. CRC Press: 2017.
69. Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S., Anti-reflective coatings: A critical, in-depth review. Energy & Environmental Science 2011, 4 (10).
70. Buskens, P.; Burghoorn, M.; Mourad, M. C.; Vroon, Z., Antireflective Coatings for Glass and Transparent Polymers. Langmuir 2016, 32 (27), 6781-93.
71. Clapham, P. B.; Hutley, M. C., Reduction of Lens Reflexion by the “Moth Eye” Principle. Nature 1973, 244 (5414), 281-282.
72. Southwell, W. H., Gradient-index antireflection coatings. Opt. Lett. 1983, 8 (11), 584-586.
73. Sheldon, B.; Haggerty, J. S.; Emslie, A. G., Exact computation of the reflectance of a surface layer of arbitrary refractive-index profile and an approximate solution of the inverse problem. Journal of the Optical Society of America 1982, 72 (8).
74. Rayleigh, L., On the Stability, or Instability, of certain Fluid Motions. Proceedings of the London Mathematical Society 1879, s1-11 (1), 57-72.
75. Cho, J.; Hong, J.; Char, K.; Caruso, F., Nanoporous block copolymer micelle/micelle multilayer films with dual optical properties. J Am Chem Soc 2006, 128 (30), 9935-42.
76. Morhard, C.; Pacholski, C.; Lehr, D.; Brunner, R.; Helgert, M.; Sundermann, M.; Spatz, J. P., Tailored antireflective biomimetic nanostructures for UV applications. Nanotechnology 2010, 21 (42), 425301.
77. Dutriez, C.; Satoh, K.; Kamigaito, M.; Yokoyama, H., Cross-linked nanocellular polymer films: water- and oil-repellent anti-reflection coating. Polymer Journal 2016, 48 (4), 497-501.
78. Ye, C.; Vogt, B. D., Nanoporous block copolymer films using highly selective solvents and non-solvent extraction. Soft Matter 2015, 11 (43), 8499-507.
79. Li, X.; Yu, X.; Han, Y., Polymer thin films for antireflection coatings. Journal of Materials Chemistry C 2013, 1 (12).
80. Hanaei, H.; Assadi, M. K.; Saidur, R., Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review. Renewable and Sustainable Energy Reviews 2016, 59, 620-635.
81. Vahanian, E.; Yavrian, A.; Gilbert, R.; Galstian, T., Enhancement of the electrical response in high concentrating photovoltaic systems by antireflective coatings based on silica nanoparticles. Solar Energy 2016, 137, 273-280.
82. Meng, X.; Wang, Y.; Wang, H.; Zhong, J.; Chen, R., Preparation of hydrophobic and abrasion-resistant silica antireflective coatings by using a cationic surfactant to regulate surface morphologies. Solar Energy 2014, 101, 283-290.
83. Yadav, H. M.; Kim, J.-S., Fabrication of SiO2/TiO2 double layer thin films with self-cleaning and photocatalytic properties. Journal of Materials Science: Materials in Electronics 2016, 27 (10), 10082-10088.
84. Li, Y.; Yang, K.; Xia, B.; Yang, B.; Yan, L.; He, M.; Yan, H.; Jiang, B., Preparation of mechanically stable triple-layer interference broadband antireflective coatings with self-cleaning property by sol–gel technique. RSC Advances 2017, 7 (24), 14660-14668.
85. Murata, T.; Ishizawa, H.; Motoyama, I.; Tanaka, A., Preparation of high-performance optical coatings with fluoride nanoparticle films made from autoclaved sols. Applied Optics 2006, 45 (7).
86. Bernsmeier, D.; Polte, J.; Ortel, E.; Krahl, T.; Kemnitz, E.; Kraehnert, R., Antireflective coatings with adjustable refractive index and porosity synthesized by micelle-templated deposition of MgF2 sol particles. ACS Appl Mater Interfaces 2014, 6 (22), 19559-65.
87. Ding, R.; Cui, X.; Zhang, C.; Zhang, C.; Xu, Y., Tri-wavelength broadband antireflective coating built from refractive index controlled MgF2 films. Journal of Materials Chemistry C 2015, 3 (13), 3219-3224.