簡易檢索 / 詳目顯示

研究生: 曾俊杰
Tseng, Chun-Chieh
論文名稱: 環狀脂肪族高分子之合成及其在化學增幅正型光阻劑之應用研究
Study on the Synthesis of Alicyclic Polymers and Their Applications on the Chemical Amplified Positive Photoresist
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 96
中文關鍵詞: 環狀脂肪族高分子化學增幅正型光阻劑
外文關鍵詞: alicyclic polymers, chemical amplified photoresist, positive photoresist
相關次數: 點閱:57下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Diels-Alder反應將馬來酸酐(MA)與Furan合成具有環狀結構的單體3,6-endoxo-1,2,3,6-tetrahydrophthalic anhydride ( THPA ),並利用(-)-樟腦醇(borneol)和甲基丙烯酸(MAA)以酯化反應合成側鏈含脂肪環之(-)-bornyl methacrylate((-)-BMA)。再將此二單體與馬來酸酐(MA)、二融環[2,2,1]庚烯-[2](NB)和甲基丙烯酸三級丁酯(t-BMA)等單體進行共聚合反應。並藉由FT-IR、1H-NMR、UV、GPC、TGA、DSC和EA進行所合成高分子之定性及定量分析。
    由於光阻高分子要求分子量大約在10,000以下,以不同的反應條件可得到各種不同分子量之聚合物,其中以添加正-丁基硫醇(n-Butyl mercaptan)當做鏈轉移劑時可容易得到較低分子量聚合物。本研究所合成之環狀脂肪族共聚物,經由紫外光光譜儀測試得知最大吸收約在220nm左右,故可應用於g-line(436nm)、i-line(365nm)和ArF(193nm)等光蝕刻微影技術。所合成之共聚物與光酸發生劑等配製成化學增幅正型光阻劑,藉由微影製程之測試,探討各光阻之特性曲線,並以含有最佳感度與對比值之PR5光阻劑做顯像,其解像力可達0.5μm。在抗蝕刻之測試上,所合成之高分子之光阻抗蝕刻能力都比PMMA更好。

    Alicyclic 3,6-endoxo-1,2,3,6-tetrahydrophthalic anhydride monomer (THPA) was synthesized by Dield-Alder process. Chiral (-)-bornyl methacrylate ((-)-BMA) was prepared from dehydrating esterification of (-)-borneol and methacrylic acid (MAA). Both acrylic monomers were then copolymerized with maleic anhydride (MA), 2-norborene (NB), and tert-butyl methacrylate (t-BMA). The structures and the physical properties of copolymers such synthesized were all confirmed and evaluated by using FTIR, EA, 1H-NMR, UV-Vis, TGA, DSC and GPC.
    To obtain copolymers having molecular weight lower than 10000, n-butyl mercaptan was added and low molecular weight copolymers were synthesized successfully. The �max of the alicyclic copolymers is around 220 nm. The copolymers can be applied on the filed of g-line (436 nm), i-line (365 nm), and ArF (193 nm) photoresists. The positive tone lithographic characteristics of the copolymers with photo acid generator (PAG) were estimated. Thermal properties and solubility in various alkaline aqueous solutions of the photoresists were all evaluated. The resolution of 0.5 �m of the positive tone photoresist with PR-5 was achieved. The stability and the reliability of the photoresist with copolymers synthesized in this investigation were all confirmed. It was found that the dry etching resistance of the photoresists is better than that of PMMA.

    摘要      I Abstract    II 目錄      III 表目錄     VI 圖目錄     VII Scheme     XII 符號表     XIII 第一章 、緒論 1-1前言              1 1-2微影技術發展          2 1-3光阻的應用與其發展趨勢     4 1-4研究動機            4 第二章、原理與文獻回顧 2-1 Diels-Alder 反應           5 2-2 游離基連鎖聚合反應          5 2-2-1 熱分解起始劑            6 2-2-2 鏈轉移反應             7 2-3 半導體製程              7 2-4 微影製程               8 2-4-1 晶圓表面清潔            8 2-4-2塗底(Priming)            9 2-4-3光阻塗佈(Resist coating)      11 2-4-4預烤(Prebaking)           12 2-4-5曝光(Exposure)            12 2-4-6曝後烤( Post exposure baking, PEB ) 17 2-4-7顯影(Development)          18 2-4-8硬烤(Hard baking)          18 2-5化學增幅型光阻劑            18 2-5-1何謂光阻劑              18 2-5-2化學增幅型(Chemical amplication)   19 2-5-3 193奈米(ArF)光阻           22 2-6光阻特性                24 2-6-1感度(Sensitivity)           24 2-6-2對比(Contrast)            25 2-6-3解析度(Resolution)          25 2-6-4熱穩定性(Thermal stability)      26 2-6-5接著性(Adhesion)           26 第三章、實驗 3-1藥品             29 3-2儀器             31 3-3合成與聚合反應方法      32 3-3-1試藥前處理         32 3-3-2光阻材料之製備       32 3-3-3單體與共聚合物的分析鑑定  38 3-3-4微影製程          39 第四章、結果與討論 4-1 單體之合成及分析           42 4-2 聚合物的合成             43 4-2-1 含MA、(-)-BMA和t-BMA之共聚物    43 4-2-2 含MA和t-BMA之共聚物         45 4-2-3 含MA、THPA和t-BMA之共聚物      46 4-2-4 含MA、NB和t-BMA之共聚物       48 4-3 微影製程性質探討            49 4-3-1光阻劑之配製             49 4-3-2 光阻劑旋轉塗佈轉速之決定       51 4-3-3 預烤參數之測定            51 4-3-4 曝後烤條件之決定           51 4-3-5 顯影條件之決定            55 4-3-6 光阻劑特性曲線分析          58 4-3-7 光阻劑之顯像分析           60 4-4 耐蝕刻性質探討             61 第五章 結論                92 參考文獻                  93

    1. Woodward and Bear, “The reaction of Furan with Maleic Anhydride”, J. Am. Chem. Soc., 70, 1161 (1948).
    2. A. P. Dunlop and F. N. Peters, “The Furans”, Reinhold Pub. Corp., New York, 54-64 (1953).
    3. B. Cohen. Juliu, “Practical organic chemistry”, Macmillan and Co., London, 1117-1126 (1930).
    4. 蔡福人,“含菠酯基光學活性高分子之合成及其物性探討與其在光學分割之應用研究”,國立成功大學博士論文,2000。
    5. 李柏毅,“正型鹼性水溶液顯影感光性聚亞醯胺材料之研究”,國立成功大學碩士論文,2002。
    6. 曾伯逸,“含Ketal基化學增幅型光阻劑之合成及特性研究”,國立成功大學碩士論文,2002。
    7. 薛敬和,“高分子化學實驗法”,高立出版社,49-50,1997。
    8. 林松香、曾朝輝,“IC光阻材料技術發展(上)”,工業材料雜誌,189期,175頁,2002年9月。
    9. T. Fujigaya, Y. Sibasaki, S. Ando, S. Kishimura, M. Endo, M. Sasago and M. Ueda, “New Photoresist Materials for 157-nm Lithography. Poly[Vinylsulfonyl Fluoride-co-4-(1,1,1,3,3,3-hexafluoro-2-hydroxy-
    propyl)-styrene] Partially Protected with tert-Butoxycarbonyl” Chem. Mater., 15, 1512 (2003).
    10. George Odian, “Principles of polymerization”, Wiley, New York, 198-255 (1991).
    11. M. F. Ilker, and E. B. Coughlin, “Alternating Copolymerizations of Polar and Nonpolar Cyclic Olefins by Ring-Opening Metathesis Polymerization”, Macromolecules, 35(1), 54 (2002).
    12. K.J. Ivin, “Olefin Metathesis”, Academic Press, London, 267-281 (1983).
    13. 周立恆,“Deep UV 化學增富型光阻劑合成及其特性研究”,國立臺灣大學碩士論文,1998。
    14. 莊達人,“VLSI製造技術”,高立出版社,1996。
    15. K. Sugita, “Application of photodegradable polymers to imaging and microfabrication technologies: a review of recent research papers in the last 4 years”, Progress in Organic Coatings, 31, 87 (1997).
    16. 傅士奇,“IC製程中深次微米光阻劑之製備及微影性質研究”,國立臺灣大學博士論文,2002。
    17. 劉瑞祥,“感光性高分子”,復文書局,52-97,1998。
    18. 宋清潭,“IC光阻劑技術發展趨勢”,化工技術,第10卷,第三期,136頁,2002年3月。
    19. R. T. Morrison, and R. N. Boyd, “Organic chemistry”, Allyn and Bacon, Boston, 982-1014 (1992).
    20. 施仁傑,“壓克力系脂環族共聚物之合成及其在光酸增幅型光阻劑之應用研究”,國立成功大學博士論文,2001。
    21. 蕭宏,“半導體製程技術導論”,歐亞書局有限公司,2001。
    22. 龍文安,“積體電路微影製程”,高立出版社,1998。
    23. B. Bohumil, K. Jaroslav, and J. Zachoval, “Resists in microlithography and printing”, Elsevier, New York, 1993.
    24. L. F. Thompson, C. G. Wilson, and M. J. Bowden, “Introduction to Microlithography”, 2ed., American Chemical Society, Washington, 1994.
    25. J. R. Sheats, and B. W. Smith, “Microlithography science and technology”, Marcel Dekker, New York, 1998.
    26. H. Ito, and C.G. Wilson, ACS Symp.Ser., 242, 11 (1983).
    27. M. Murata, T. Takahashi, and M. Koshiba, Proc. SPIE, 1262, 8 (1990).
    28. S. A. M. Hesp, N. Hayashi, and T. Ueno, J. Appl. Polym. Sci., 42, 877 (1992).
    29. R. Schwalm, H. Binder, and T. Fisher, Proc. SPIE, 2195, 2 (1994).
    30. H. Ito, and C. G. Willson, Polym. Eng. Sci., 23, 1012 (1983).
    31. J. M. J. Fréchet, F. Bounchard, and F. Houlihan, ACS Polym. Mater. Sci. Eng., 53, 263 (1985).
    32. W. E. Feely, J. C. Imhof, and C. M. Stein, Polym. Eng. Sci., 26, 1101 (1986).
    33. J. M. Havard, S. Y. Shim, and J. M. J. Fréchet, Chem. Mater., 11, 719-725 (1999).
    34. K. J. Stewart, M. Hatzakis, and J.M. Shaw, J.Vac. Sci. Technol. B7, 1734-1739 (1989).
    35. R. Sooriyakumaran, H. Ito, and E. A. Mash, Proc. SPIE 1466, 419-428 (1991).
    36. H. Ito, IBM J. RES. DEVELOP, 44 , 119-130 (2000).
    37. R. D. Allen, G. M. Wallraff, and R. A. Dipietro, J. Photopolym. Sci. Technol., 7, 507 (1994).
    38. T. Naito, K. Asakawa, and N. Shida, Jpn. J. Appl. Phys., 33, 7028 (1994).
    39. Y. Kaimoto, K. Nozaki, and S. Takechi, Chem. Mater., 6, 1492 (1994).
    40. F. M. Houlihan, T. I. Wallow, and O. Nalamasu, Macromolecules, 30, 6517-6524 (1997).
    41. J. B. Kim, H. J. Yun, and Y. G. kwon, Polymer, 41, 8035-8039 (2000).
    42. J. B. Kim, B. W. Lee, and J. S. Kang, Polymer, 40, 7423-7426 (1999).
    43. J. H. Lee, K. D. Ahn, and I. Cho, Polymer, 42, 1757-1761 (2001).
    44. U. Okoroanyanwu, T. Shimokawa, and J. D. Byers, J. of Molecular catalysis A: chem., 133, 93-114 (1998).

    下載圖示 校內:立即公開
    校外:2003-06-27公開
    QR CODE