| 研究生: |
張軒維 Chang, Hsuan-Wei |
|---|---|
| 論文名稱: |
鹼金屬吸附於石墨烯奈米帶的豐富電子性質 Alkali-Induced Rich Electronic Property of Graphene Nanoribbons |
| 指導教授: |
林明發
Lin, Ming-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 鹼金屬 、石墨烯奈米帶 、第一原理計算 |
| 外文關鍵詞: | alkali metal, graphene nanoribbons, first-principles calculation |
| 相關次數: | 點閱:67 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,石墨烯奈米帶由於其獨特的物理和電學特性在微電子領域有著巨大的應用前景。在各種的研究中,改變電性是我們有興趣想探討的主題。而改變方法有許多種,在奈米帶表面吸附非碳原子是有效其中之一。
本論文為使用VASP材料模擬程式,運用第一原理來計算,將石墨烯奈米帶表面吸附鹼金屬原子,改變奈米帶的寬度或鹼金屬吸附的濃度,討論幾何結構、能帶、電荷密度和態密度。從幾何結構得知最佳吸附位置、鍵長、吸附能的變化。而能帶則是給出吸附後變為帶有自由載子的金屬、導電電子主要為哪種原子貢獻、載子濃度大小,並與簡單的化學圖象計算的載子濃度比對加以驗證。電荷密度可與吸附能、鍵長、態密度定性上的成正比的趨勢,藉此分析得知吸附最穩定的鹼金屬為鋰原子。
The models based on the first-principles calculation are used to study the electronic properties of graphene nanoribbons. The width variation of the nanoribbon and different degrees of alkali metal adsorption provide means to create some peculiar effects. It is revealed from the band structure that alkali metals or carbons are the main contributors for the free electrons. The densities of free carriers are obtained from the crossing points where the conduction bands are intercepted by the Fermi level. As compared with the results from the theoretical chemistry, there is a good match between the linear carrier density formula and the energy band theory. The stability of the geometric structure due to the adsorption of alkali atoms can correspond to the adsorption energies, the variations of charge density differences, and the extra DOS peak magnitudes near the Fermi energy.
[1] H.W. Kroto, J.R. Heath, et al., "C-60 - Buckminsterfullerene". Nature 318, 6042(162-163) (1985).
[2] R.E. Haufler, J. Conceicao, et al., "Efficient Production of C60 (Buckminsterfullerene), C60h36, and the Solvated Buckide Ion". J Phys Chem-Us 94, 24(8634-8636) (1990).
[3] K. Hedberg, L. Hedberg, et al., "Bond lengths in free molecules of buckminsterfullerene, c60, from gas-phase electron diffraction". Science 254, 5030(410-412) (1991).
[4] N.S. Sariciftci, D. Braun, et al., "Semiconducting Polymer-Buckminsterfullerene Heterojunctions - Diodes, Photodiodes, and Photovoltaic Cells". Applied Physics Letters 62, 6(585-587) (1993).
[5] M.F. Lin, and K.W.K. Shung, "Plasmons and Optical-Properties of Carbon Nanotubes". Physical Review B 50, 23(17744-17747) (1994).
[6] M.F. Lin, and K.W.K. Shung, "Magnetoconductance of Carbon Nanotubes". Physical Review B 51, 12(7592-7597) (1995).
[7] M.F. Lin, C.S. Huang, et al., "Plasmons in graphite and stage-1 graphite intercalation compounds". Physical Review B 55, 20(13961-13971) (1997).
[8] F.L. Shyu, and M.F. Lin, "Loss spectra of graphite-related systems: A multiwall carbon nanotube, a single-wall carbon nanotube bundle, and graphite layers". Physical Review B 62, 12(8508-8516) (2000).
[9] J.H. Ho, C.L. Lu, et al., "Coulomb excitations in AA- and AB-stacked bilayer graphites". Physical Review B 74, 8(085406-085413) (2006).
[10] Y.H. Lai, J.H. Ho, et al., "Magnetoelectronic properties of bilayer Bernal graphene". Physical Review B 77, 8 (2008).
[11] Y.H. Ho, Y.H. Chiu, et al., "Magneto-optical Selection Rules in Bilayer Bernal Graphene". Acs Nano 4, 3(1465-1472) (2010).
[12] J.Y. Wu, S.C. Chen, et al., "Plasma Excitations in Graphene: Their Spectral Intensity and Temperature Dependence in Magnetic Field". Acs Nano 5, 2(1026-1032) (2011).
[13] J.H. Wong, B.R. Wu, et al., "Strain Effect on the Electronic Properties of Single Layer and Bilayer Graphene". J Phys Chem C 116, 14(8271-8277) (2012).
[14] C.Y. Lin, J.Y. Wu, et al., "Magneto-electronic properties of multilayer graphenes". Phys Chem Chem Phys 17, 39(26008-26035) (2015).
[15] S.Y. Lin, S.L. Chang, et al., "Feature-rich electronic properties in graphene ripples". Carbon 86, (207-216) (2015).
[16] K.S. Novoselov, A.K. Geim, et al., "Electric field effect in atomically thin carbon films". Science 306, 5696(666-669) (2004).
[17] Y. Zhang, Y.W. Tan, et al., "Experimental observation of the quantum Hall effect and Berry's phase in graphene". Nature 438, 7065(201-204) (2005).
[18] C. Berger, Z. Song, et al., "Electronic confinement and coherence in patterned epitaxial graphene". Science 312, 5777(1191-1196) (2006).
[19] K.S. Novoselov, A.K. Geim, et al., "Two-dimensional gas of massless Dirac fermions in graphene". Nature 438, 7065(197-200) (2005).
[20] S.V. Morozov, K.S. Novoselov, et al., "Giant intrinsic carrier mobilities in graphene and its bilayer". Physical review letters 100, 1(016602) (2008).
[21] K. Nakada, M. Fujita, et al., "Edge state in graphene ribbons: Nanometer size effect and edge shape dependence". Physical review. B, Condensed matter 54, 24(17954-17961) (1996).
[22] J. Haskins, A. Kinaci, et al., "Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons". Acs Nano 5, 5(3779-3787) (2011).
[23] S. Dutta, and S.K. Pati, "Novel properties of graphene nanoribbons: a review". J Mater Chem 20, 38(8207-8223) (2010).
[24] M. Wang, and C.M. Li, "Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons". Nanoscale 3, 5(2324-2328) (2011).
[25] F. Cervantes-Sodi, G. Csanyi, et al., "Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties". Physical Review B 77, 16 (2008).
[26] K. Kim, H.J. Park, et al., "Electric property evolution of structurally defected multilayer graphene". Nano letters 8, 10(3092-3096) (2008).
[27] V. Barone, O. Hod, et al., "Electronic structure and stability of semiconducting graphene nanoribbons". Nano letters 6, 12(2748-2754) (2006).
[28] X.J. Zhang, K.Q. Chen, et al., "Electronic transport properties on V-shaped-notched zigzag graphene nanoribbons junctions". Phys Lett A 375, 37(3319-3324) (2011).
[29] X. Zhang, J.L. Kuo, et al., "Graphene nanoribbon band-gap expansion: broken-bond-induced edge strain and quantum entrapment". Nanoscale 2, 10(2160-2163) (2010).
[30] T. Ozaki, K. Nishio, et al., "Dual spin filter effect in a zigzag graphene nanoribbon". Physical Review B 81, 7 (2010).
[31] M.G. Zeng, L. Shen, et al., "Charge and spin transport in graphene-based heterostructure". Applied Physics Letters 98, 5(053101-053103) (2011).
[32] M. Qiu, and K.M. Liew, "Odd-Even Effects of Electronic Transport in Carbon-Chain-Based Molecular Devices". J Phys Chem C 116, 21(11709-11713) (2012).
[33] P. Wagner, C.P. Ewels, et al., "Band Gap Engineering via Edge-Functionalization of Graphene Nanoribbons". J Phys Chem C 117, 50(26790-26796) (2013).
[34] L.L. Song, X.H. Zheng, et al., "Dangling Bond States, Edge Magnetism, and Edge Reconstruction in Pristine and B/N-Terminated Zigzag Graphene Nanoribbons". J Phys Chem C 114, 28(12145-12150) (2010).
[35] C. Cao, M. Wu, et al., "Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures". Physical Review B 81, 20 (2010).
[36] C. Cocchi, D. Prezzi, et al., "Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions". J Phys Chem C 116, 33(17328-17335) (2012).
[37] D. Wang, Z.H. Zhang, et al., "Electrical and magnetic properties of graphene nanoribbons with BN-chain doping". Acta Phys Sin-Ch Ed 62, 20 (2013).
[38] P. Srivastava, N.K. Jaiswal, et al., "First-principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules". Superlattice Microst 73, (350-358) (2014).
[39] D. Krepel, and O. Hod, "Lithium adsorption on armchair graphene nanoribbons". Surface Science 605, 17-18(1633-1642) (2011).
[40] G. Kresse, and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set". Physical Review B 54, 16(11169-11186) (1996).
[41] J.P. Perdew, K. Burke, et al., "Generalized gradient approximation made simple (vol 77, pg 3865, 1996)". Physical review letters 78, 7(1396-1396) (1997).
[42] P.V. Medeiros, F. de Brito Mota, et al., "Adsorption of monovalent metal atoms on graphene: a theoretical approach". Nanotechnology 21, 11(115701) (2010).
[43] K.T. Chan, J.B. Neaton, et al., "First-principles study of metal adatom adsorption on graphene". Physical Review B 77, 23 (2008).
[44] F. Ma, Z. Guo, et al., "First-principle study of energy band structure of armchair graphene nanoribbons". Solid State Communications 152, 13(1089-1093) (2012).
[45] Y.W. Son, M.L. Cohen, et al., "Energy gaps in graphene nanoribbons". Physical review letters 97, 21(216803) (2006).