| 研究生: |
蔡文璋 Tsai, Wen-Chang |
|---|---|
| 論文名稱: |
有機溶劑中以脂肪分解酵素為觸媒進行(α)-苯基乙胺之轉胺化分割 Enzymatic Resolution of (α)-Phenylethylamine Using Candida antarctica Lipase-B with Organic Solvent |
| 指導教授: |
蔡少偉
Tsai, Shau-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 消旋 、亞胺 、動力分割 、(α)-苯基乙胺 |
| 外文關鍵詞: | (α)-phenylethylamine, kinetic resolution, imine, racemization |
| 相關次數: | 點閱:53 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究動機在於開發酵素動態動力分割製程,自外消旋胺獲得其高純度鏡像異構醯胺。在研究方向上分成兩大部分,其一為以(S)-(α)-苯基乙胺及苯乙酮為反應基質,合成(S)-亞胺,並探討有機鹼觸媒、反應物濃度、有機溶劑種類及反應溫度等操作變因對消旋反應之影響。初步實驗結果顯示並未獲得外消旋亞胺。另一部分則以外消旋(α)-苯基乙胺為反應基質,進行酯類的篩選以及探討溫度、反應物濃度和有機溶劑對酵素選擇性之影響。實驗發現在100℃以下之正癸烷中,以甲氧基乙酸乙酯與外消旋(α)-苯基乙胺進行酵素動力分割反應,可獲得較佳的鏡像比值(E = 21.1);以5 mM外消旋 (α)-苯基乙胺與10 mM甲氧基乙酸乙酯進行酵素動力分割,發現當溫度在70~80℃時,酵素有最佳之選擇性(E > 100)。
This research is aimed to develop an enzymatic dynamic kinetic resolution process, in which racemic (α)-arylamine is the substrate and a highly stereo-pure amide is obtained by employing an enzymatic amination coupled with in situ racemization of the remaining (S)-amine. The main works include racemization of (S)-(α)-phenylethylamine and enzymatic kinetic resolution of (R,S)-(α)-phenylethylamine. For the former, we synthesized and purified the (S)-imine synthesized from (S)-(α)-phenylethylamine and acetophone. Then, effects of the operation parameters such as organic bases as catalysts, reactant concentration, solvents and temperature were studied. Unfortunately, no 1, 3-proton shift reaction for the (S)-imine occurred. For the latter, the kinetic resolution of racemic (α)-phenylethylamine were investigated, in which esters, temperature, amine and ester concentrations were varied. The results indicate that with racemic (α)-phenylethylamine and ethyl methoxyacetate as substrates, high lipase enantioselectivity ( E > 100) was obtained at the temperature range of 70~80℃ in decane.
Anderson E.M., Larsson K.M. and Kirk O., One biocatalyst- many applications: the use of Candida Antarctica B-lipase in organic synthesis. Biocatal. Biotransform., 16, 181-204, 1998.
Arroyo M. and Sinisterra J.V., Hight enantioselective esterification of 2-arypropionic acids catalyzed by immobilized lipase from Candida Antarctica: A mechanistic approach. J. Org. Chem., 59, 4410-4417, 1994.
Arroyo M., Sanchez-Montero J.M. and Sinisterra J.V., A new method to determine the aw range in which immobilized lipases display optimum activity in organic media. Biotechnol. Tech., 10, 263-266, 1996.
Breuer M., Ditrich K., Habicher T., Hauer B., Kesseler M., Strmuer R., and Zelinski T., Industrial methods for the production of optically active intermediates, Angew. Chem. Int. Ed., 34, 788, 2004.
Cao L., Bornscheuer U.T. and Schmid R.D., Lipase-catalyzed solid phase synthesis of sugar esters. Fett/Lipid, 98, 332-335, 1996.
Cao L., Fischer A., Bornscheuer U.T. and Schmid R.D., Lipase-catalyzed solid phase synthesis of fatty acid sugar esters. Biocatal. Biotransform., 14, 269-283, 1997.
Cordova A., Hult K. and Iversen T., Esterification of methyl glycoside mixtures by lipase catalyis. Biotechnol. Lett., 19, 15-18, 1997.
David A. Jaeger and Donald J. Cram, Electrophilic substitution at saturated carbon. XLIX. Stereospecific transamination. J. Am. Chem. Soc., 93, 5153-5161, 1971.
Donald J. Cram and Robert D. Guthrie, Electrophilic substitution at saturated carbon. XXVII. Carbanions as intermediates in the base-catalyzed methylene-azomethine rearrangement, J. Am. Chem. Soc., 88, 5760 - 5765, 1966.
Hansen T.V., Waagen V., Anthonsen H.W. and Anthonsen T., Co-solvent enhancement of enantioselectivity in lipase-catalyzed hydrolysis of racemic ester. Tetrahedron: Asymmetry, 6, 499-504, 1995.
Islam M.R., Mahdi J.G. and Bowen I.D., Pharmacological importance of stereochemical resolution of enatiomeric drugs. Drug Safety, 14, 149-165, 1997.
Jacques J., Collett A, Wilen S., Enantiomers, Racemates, and Resolution, Wiley-Interscience, New York, 1980.
Laane, Boeren C.S., Vos K. and Veeger C., Rules for optimization of biocatalysis in organic solvents, Biotechnol. Bioeng., XXX, 81-87, 1987.
Ljunger, G., Adlercreutz, P. and Mattiasson, B., Lipase catalyzed acylation of glucose. Biotechnol. Lett., 16, 1167-1172, 1994.
Morrison B., Organic Chemistry; Prentice-Hall, 6th Ed., 1992.
Orrenius, C., Norin, T., Hult, K. and Carrea, G., The Candida Antarctica lipase catalyzed kinetic resolution of seudenol in non-aqueous media of controlled water activity. Tetrahedron: Asymmetry, 6, 3023-3030, 1995.
Oscar P., Alida H.E., Joseph S.M., Nina H.S. and Backvall J.-E., An efficient and mild ruthenium-catalyzed racemization of amines: application to the synthesis of enantiomerically pure amines. Tetrahedron Letters, 43, 4699-4702, 2002.
Overberger C.G., Marullo N.P. and Hiskey R.G., Stereochemistry of the Decomposition of N-Nitroso- and N-Amino-α,α'-dimethyldibenzylamine. J. Am. Chem. Soc., 83, 1374-1378, 1961.
Reetz M.T., Lipase as practical biocatalysts. Curr. Opin. Chem. Biol., 6, 145-150, 2002.
Rogalska E., Cudrey C., Ferrato F. and Verger R., Stereoselective hydrolysis of triglycerides by animal and microbial lipase, Chirality, 5, 24-30, 1993.
Roger A.S., Chirotechnology, New York. Basel. Hong Kong, 1993.
Sharma R., Chisti Y. and Banerjee U.C., Production, purification characterization and applications of lipases. Biotechnol. Advances, 19, 627-662, 2001.
Schmid R.D. and Verger R., Lipase: interfacial enzymes with attractive applications. Angew. Chem.. Int. Ed., 37, 1608-1633, 1998.
Uppenberg J., Ohrner N., Norin, M., Hult K., Kleywegt G.J., Patkar S., Waagen V., Anthonsen T. and Jones A., Crystallographic and molecular-modeling studies of lipase from Candida Antarctica reveal a stereospecific pocket for secondary alcohols. Biochem., 34 ,16838-16851, 1995.
Van-Rantwijk F. and Sheldon R.A., Enantioselective acylation of chiral amines catalysed by serine hydrolases. Tetrahedron, 60, 501-519, 2004.
王莉雯:外消旋suprofen硫酯之動態動力分割製程開發。國立成功大學碩士論文,2002。