簡易檢索 / 詳目顯示

研究生: 黃柏勳
Huang, Bo-Xun
論文名稱: 具有尖釘之鈍體於極音速流場環境下氣動加熱行為之數值模擬分析
Numerical Simulation of Aerodynamic Heating Behavior of a Blunt Body with Spike in Hypersonic Flow
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 極音速衝擊流場減阻裝置氣動加熱化學效應
外文關鍵詞: Hypersonic flow, Drag reduction devices, Aerodynamic heating, Chemical reaction
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 極音速載具為現今各國主力發展之一,而在極音速環境下所帶來的嚴峻挑戰也隨之而來,載具表面所承受阻力及熱負載成為一大關鍵。透過於鈍體前方添加入尖釘是一種簡單且有效降低阻力及熱負載的方法,故本研究使用數值模擬方式,針對具有尖釘之鈍體進行阻力及熱負載的評估,有利於未來設計極音速之外型及熱防護材料之依據。
    本研究在流場模型驗證中,將模擬的密度圖、鈍體上之壓力分布及熱通量分布趨勢與實驗結果進行比對驗證,以確認所建置模型之可靠性。接著本研究透過改變尖釘的幾何外型,從中可以看出流場結構差異。研究結果顯示,增加尖釘之長度及角度,會增加有效體之形狀,有利於降低壁面壓力及熱負載。並且每當增加尖釘長度時,所降低之壓力及熱通量的差距也會逐漸縮小。而在建立化學模型之驗證分析當中,於流場中可觀測到因高溫產生之化學效應,氣體產生大量解離之現象,導致震波與鈍體間之溫度流場會隨之下降。而所模擬結果之流場現象及物理性質與實驗及文獻模擬結果相近,驗證本研究化學模型之有效性。最後,透過在不同馬赫數的模擬研究當中,可得出隨著馬赫數增加,造成整體流場所承受之壓力及熱負載更大之外,也可觀測到本研究在馬赫數13狀態下會產生顯著的化學效應,相對而言6.8及10馬赫狀態下化學效應並不顯著。並且透過熱通量分布圖可觀測到考慮化學效應後,熱通量會產生些許差距,這也說明在相同流場條件下,若要考慮更高之馬赫數,化學效應之重要性也會隨之提高。

    Today, hypersonic vehicles are one of the main development projects of various countries. Nevertheless, the severe challenges posed by the hypersonic environment also need to be faced. The resistance and heat load that the surface of the carrier needs to bear becomes a key point in the design. It is known that adding Spike in front of the blunt body is a simple and effective way to reduce drag and heat load. This study uses numerical simulation to evaluate the resistance and thermal load of a blunt body with a Spike.
    In the verification of the flow field model, this study compared the simulation results with the experimental values to confirm the reliability of the model. Then, this study observes the difference between the flow field structures through the change of the geometric shape of the Spike. The research results show that increasing the length and angle of the Spike will increase the shape of the effective body, which is beneficial to reduce the wall pressure and thermal load. And whenever the length of the Spike increases, the variation of pressure difference and heat flux difference will gradually decrease. Finally, through the simulation studies of different Mach numbers, it can be concluded that as the Mach number increases, the pressure and heat load on the overall flow field will be greater. In addition, significant chemical effects can also be observed in this study at Mach 13. Relatively speaking, in the state of Mach number 6.8 and 10, the chemical effect is not significant. Through the heat flux distribution diagram, it can also be observed that after considering the chemical effect, there will be a slight difference in the heat flux. This situation also shows that under the same flow field conditions, if a higher Mach number is considered, the representative importance of chemical effects will also increase accordingly.

    摘要 I SUMMARY III INTRODUCTION IV GOVERNIG EQUATION V RESULTS AND DISCUSSION VI CONCLUSIONS XI REFERENCES XI 誌謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 符號索引 XIX 第一章 序論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 13 第二章 數學與物理模型 16 2.1 基本假設 16 2.2 連續相之統御方程式 17 2.3 紊流模型 20 2.4邊牆函數 24 2.5化學模型 27 第三章 數值方法 31 3.1 控制體積轉換之傳輸方程式 31 3.2 壓力耦合半隱式演算法 32 3.3 二階迎風法 33 3.4 鬆弛因子 34 3.5 收斂標準 35 第四章 結果與討論 36 4.1 流場模型的建立及驗證分析 37 4.2 具有尖釘之鈍體流場模型分析 44 4.3 不同幾何參數之Spike流場分析 56 4.4 化學模型建立與驗證分析 73 4.5 化學效應於具有尖釘之鈍體衝擊流場分析 80 第五章 結論與未來工作 87 5.1結論 87 5.2未來工作 89 參考文獻 91

    【1】 Anderson, John David. Hypersonic and high temperature gas dynamics. AIAA, 1989.
    【2】 Wieting, Allan R., and Michael S. Holden. Experimental shock-wave interference heating on a cylinder at Mach 6and 8. AIAA Journal 27.11 (1989) 1557-1565.
    【3】 Dechaumphai, Pramote, Earl A. Thornton, and Allan R. Wieting. Flow-thermal-structural study of aerodynamically heated leading edges. Journal of Spacecraft and Rockets 26.4 (1989) 201-209.
    【4】 Menter, Florian R. Two-equation eddy-viscosity turbulence models for engineering applications.AIAA Journal 32.8 (1994): 1598-1605.
    【5】 Zhao, Xiaoli, et al. Coupled flow-thermal-structural analysis of hypersonic aerodynamically heated cylindrical leading edge. Engineering Applications of Computational Fluid Mechanics 5.2 (2011) 170-179.
    【6】 Zhang, Shengtao, Fang Chen, and Hong Liu. Time-adaptive, loosely coupled strategy for conjugate heat transfer problems in hypersonic flows. Journal of Thermophysics and Heat Transfer 28.4 (2014) 635-646.
    【7】 Chen, Fang, Hong Liu, and Shengtao Zhang. Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges. International Journal of Heat and Mass Transfer 122 (2018) 846-862.
    【8】 Bertin, John J., and Russell M. Cummings. Critical hypersonic aerothermodynamic phenomena. Annu. Rev. Fluid Mech. 38 (2006) 129-157.
    【9】 Bogdonoff, Seymour M., and Irwin E. Vas. Preliminary investigations of spiked bodies at hypersonic speeds. Journal of the Aerospace Sciences 26.2 (1959) 65-74.
    【10】 Gerdroodbary, Mostafa Barzegar, and Seyyed Sadjad Tajdaran. Aerodynamic heating in supersonic and hypersonic flows advanced techniques for drag and aero-heating reduction. Elsevier, 2022.
    【11】 Crawford, Davis H. Investigation of the flow over a spiked-nose hemisphere-cylinder at a Mach number of 6.8. National Aeronautics and Space Administration, 1959.
    【12】 Motoyama, Noboru, et al. Thermal protection and drag reduction with use of spike in hypersonic flow. 10th AIAA NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. 2001.
    【13】 Kumar, Shailendra, Vinayak Kulkarni, and Satya Pramod Jammy. Aerothermodynamic assessment of spiked configuration for drag reduction at hypersonic speeds. Journal of Aerospace Engineering 33.6 (2020).
    【14】 Alexander, Sidney R. Results of tests to determine the effect of a conical windshield on the drag of a bluff body at supersonic speeds. No. NACA-RM-L6K08a. 1947.
    【15】 Mair, W. A. LXVIII. Experiments on separation of boundary layers on probes in front of blunt-nosed bodies in a supersonic air stream. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 43.342 (1952).
    【16】 Yamauchi, Masafumi, Kozo Fujii, and Fumio Higashino. "Numerical investigation of supersonic flows around a spiked blunt body." Journal of Spacecraft and Rockets 32.1 (1995): 32-42.
    【17】 Chapman, Dean R., Donald M. Kuehn, and Howard K. Larson. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. No. NACA-TR-1356. 1958.
    【18】 Ahmed, M. Y. M., and Ning Qin. Drag reduction using aerodisks for hypersonic hemispherical bodies. Journal of Spacecraft and Rockets 47.1 (2010) 62-80.
    【19】 Gupta, Roop N., et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. NASA-RP-1232, 1990.
    【20】 Browne, W. G. Thermodynamic properties of some atoms and atomic ions,” General Electric, Engineering Physics TM 2, Philadelphia, 1962.
    【21】 Hansen, C. Frederick. Approximations for the thermodynamic and transport properties of high-temperature air. No. 4150. National Advisory Committee for Aeronautics, 1958.
    【22】 Dunn, Michael G., and S. Kang. Theoretical and experimental studies of reentry plasmas. No. NASA-CR-2232. NASA, 1973.
    【23】 周凱, 朱曉軍, 歐東斌, 胡宗民, 姜宗林, & 牟乾輝. (2020). 壁面催化效應對高超聲速氣動熱影響研究。
    【24】 Wasserman, M., Y. Levy, and J. B. Greenberg. A robust numerical method for the simulation of chemically reacting flows. 56th Israel Annual Conference on Aerospace Sciences. 2016.
    【25】 Seguin, Jory. Non-equilibrium chemistry for hypersonic flows using an edge-based finite element method. McGill University (Canada), 2018.
    【26】 ANSYS Fluent 19.0 theory guide, ANSYS Inc.2019.
    【27】 NASA Lewis Research Center. Exploring in aeronautics: An introduction to aeronautical sciences.NASA-89,1971.
    【28】 Introduction to ANSYS Fluent, turbulence modeling ,ANSYS Inc.2010.

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE