研究生: |
陳美杏 Chen, Mei-Hsing |
---|---|
論文名稱: |
微型半導體式氧氣感測器之設計製作與測試 Design, Fabrication and Characterization of Semiconductor-Type Oxygen Gas Sensors |
指導教授: |
李國賓
Lee, G. B. |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 微機電 、氧氣感測器 、半導體式 |
外文關鍵詞: | MEMS, oxygen gas sensor, Semiconductor-type |
相關次數: | 點閱:44 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微機電技術設計並製作微型半導體式氧氣感測器,其主要目的是要應用於新生兒能量消耗之量測。為了與IC製程相容,感測器以矽作為底材,並包括了加熱器、絕緣層、電極、感測層及蝕刻停止層,共5層結構。
在製程上,以佈植硼離子的多晶矽做為加熱電阻,使感測器達到最佳的操作溫度,再以二氧化矽薄膜做為加熱器與感測層間的絕緣層,而最重要的感測層,則是以佈植2 wt%鋰原子的二氧化錫做為感測材料。為了減少元件的消耗功率,最後再以KOH背部蝕刻出懸空結構。
經測試結果顯示,本研究所製作的加熱器,其消耗功率需220 mW,就可使感測器達到150℃的最佳操作溫度。可感測的氧氣濃度範圍在21%至50%之間,且以10分鐘的量測時間最為理想,其感測層的電阻相對變化量與氧氣濃度幾乎呈線性關係,可符合臨床上所需的應用。
The objective of the study is to design and develop a semiconductor-type oxygen gas sensor for a microscopic energy consumption measurement system, which will be used for monitoring of health condition of premature babies. The sensors are fabricated on silicon substrates using MEMS technologies and compatible with IC process. The device consists of five major components, including a micro-heater, an isolator, conducting electrodes, a sensing film and an etching-stop layer.
Doped polysilicon resistor is used as a heater to make the sensor operate at an appropriate temperature, resulting in a better sensitivity to the oxygen gas. Then a layer of silicon oxide is sputtered as an electrical isolator between the heater and the sensing layer. Lastly, the sensing film, tin-dioxide doped with 2wt% Li, is deposited. In order to minimize power consumption, a suspended membrane is formed by backside-etching of Si using KOH.
Experimental data show that the micro-heater can heat the membrane up to 150℃ by applying 220 mW. The oxygen sensor can successfully detect oxygen gas with the concentration ranging from 21% to 50%. It is found that the relative change of resistance is linearly proportional to the oxygen concentration while measuring time is 10 minutes. The developed sensor is suitable for clinical applications in the hospital.
[1] C. Guyton and J. E. Hall, Textbook of Medical Physiology, W. B. Saunders Company, Philadelphia, 2000.
[2] E. Martin, O. Ingremeau, M. Corazza and M. Billon, “A piezoelectric oxygen transducer based on paramagnetic properties: the TOPP sensor,” Sensors and Actuators B, Vol. 26-27, pp. 293-296, 1995.
[3] S. Liu, H. Shen and J. Feng, “Effects of gas flow-rates on a Clark-type oxygen gas sensor,” Analytica Chimica Acta, Vol. 313, pp. 89-92, 1995
[4] H. Ogino and K. Asakura, “Development of a highly sensitive galvanic cell oxygen sensor,” Talanta, Vol. 42, No.2, pp. 305-310, 1995.
[5] K. R. Sridhar, J. A. Blanchard, “Electronic conduction in low oxygen partial pressure measurements using an amperometric zirconia oxygen sensor,” Sensors and Actuators B, Vol. 59, pp. 60-67, 1999.
[6] G. L. Tan, X. J. Wu, L. R. Wang, Y. Q. Chen, “Investigation for oxygen sensor of LaF3 thin film,” Sensors and Actuators B, Vol. 34, pp. 417-421, 1996.
[7] V. I. Ogurtsov and D. B. Papkovsky, “Selection of modulation frequency of excitation for luminescence lifttime-based oxygen sensors,” Sensors and Actuators B, Vol. 51, pp. 377-381, 1998.
[8] G. Sberveglieri, W. Hellmich, G. Muller, “Silicon hotplates for metal oxide gas sensor elements,” Microsystem Technologies, Vol. 3, pp. 183-190, 1997.
[9] R. E. Cavicchi, J. S. Suehle, K. G. Kreider, M. Gaitan, and P. chaperala, “Optimized temperature pulse sequences for the enhancement of chemically-specific response patterns from micro-hotplate gas sensors,” Transducers’95 Eurosensors IX, pp. 823-826, 1995.
[10] Z. Tang, S. K. H. Fung, D. T. W. Wong, P. C.H. Chan , “An integrated gas sensor based on tin oxide thin-film and improved micro-hotplate,” Sensors and Actuators B, Vol. 46, pp. 174-179, 1998
[11] S. Semancik, R. E. Cavicchi, M. C. Wheeler, J. E. Tiffany, G. E. Poirier, “Microhotplate platforms for chemical sensor research,” Sensors and Actuators B, Vol. 77, pp. 579-591, 2001.
[12] D. Briand, A. Krauss, U. Weimar, N. Barsan, W. Gopel, “Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors,” Sensors and Actuators B, Vol. 68, pp. 223-233, 2000.
[13] I. Gracia, J. Santander, C. Cane, M. C. Horrillo, I. Sayage, J. Gutierrez, “Results on the reliability of silicon micromachined structuresf for semiconductor gas sensors,” Sensors and Actuators B, Vol. 77, pp. 409-415, 2001.
[14] W. P. Kang and C. K. Kim, “Performance analysis of a new metal-insulator-semiconductor capacitor incorporated with Pt-SnOx catalytic layers for the detection of O2 and CO gases,” J. Appl. Phys. , Vol.75, No. 8, pp. 4237-4242, 1994.
[15] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. Kerns, “Current conduction mechanism and gas adsorption effects on device parameters of the Pt/SnOx/Diamond gas sensor,” IEEE Transactions on electron devices, Vol. 46, No. 5, pp. 914-920, 1999.
[16] G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli and C. Perego, “Oxygen gas sensing properties of undoped and Li-doped SnO2 thin films,” Sensors and Actuators B, Vol. 13-14, pp. 117-120, 1993.
[17] N. Barsan, A. Tomescu, “The temperature dependence of the response of SnO2-based gas sensing layers to O2, CH4 and CO,” Sensors and Actuators B, Vol. 26-27, pp. 45-48, 1995.
[18] J. Atkinson, A. Cranny, C. Simonis , “A low-cost oxygen sensor fabricated as a screen-printed semiconductor device suitable for unheated operation at ambient temperatures,” Sensors and Actuators B, Vol. 47, pp. 171-180, 1998.
[19] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. kerns, “ A novel oxygen gas sensor utilizing thin film diamond diode with catalyzed tin oxide electrode,” Sensors and Actuators B, Vol. 35-36, pp. 303-307, 1996.
[20] C. Podaru, V. Avramescu, R. Enache, G. Stoica, “TiO2 anodic oxide films for oxygen gas sensors,” J. Electrochem. Soc, pp. 565, 1998.
[21] M. Li, Y. Chen, “An investigation of response time of TiO2 thin-film oxygen sensors,” Sensors and Actuators B, Vol.32, pp. 83-85, 1996.
[22] R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, “Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor,” Sensors and Actuators B, Vol. 45, pp. 209-215, 1997.
[23] R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, “Mechanism in Nb doped titania oxygen gas sensor,” Sensors and Actuators B, Vol.46, pp. 194-201, 1998.
[24] M. Ogita, K. Higo, Y. Nakanishi, Y. Hatanaka, “Ga2O3 thin film for oxygen sensor at high temperature,” Applied Surface Science, Vol. 175-176,pp721-725,2001.
[25] M. Fleischer, H. Meixner, “Fast gas sensors based on metal oxides which are stable at high temperatures,” Sensors and Actuators B, Vol. 43, pp. 1-10, 1997.
[26] V. Demarne, S. Balkanova, D. Rosenfeld and F. Levy, “Integrated gas sensor for oxygen detection,” Sensors and Actuators B, Vol. 13-14, pp. 497-498, 1993.
[27] I. Kosacki, H. L. Tuller, “Donor-doped Gd2Ti2O7 as a semiconductor-type oxygen sensor,” Sensors and Actuators B, Vol. 24-25, pp. 370-374, 1995.
[28] D. Rosenfeld, P. E. Schmid, S. Szeles, F. Levy ,”Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors,” Sensors and Actuators B, Vol. 37, pp. 83-89, 1996.
[29] J. Gerblinger, W. Lohwasser, U. Lampe, H. Meixner, “High temperature oxygen sensor based on sputtered cerium oxide,” Sensors and Actuators B, Vol. 26-27, pp. 93-96, 1995.
[30] S. V. Manorama, N. Izu, W. Shin, “On the platinum sensitization of nanosized cerium dioxide oxygen sensors,” Sensors and Actuators B, Vol. 89, pp. 299-304, 2003.
[31] H. Meixner, U. Lampe, “Metal oxide sensors,” Sensors and Actuators B, Vol. 33, pp. 198-202, 1996.
[32] Y. Xu, X. Zhou, O. T. Sorensen, “Oxygen sensors based on semiconducting metal oxides: an overview,” Sensors and Actuators B, Vol. 65, pp. 2-4, 2000.
[33] G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors,” Sensors and Actuators B, Vol. 23, pp. 103-109, 1995.
[34] G. Sberveglieri, Gas Sensors principles, operation and developments, Kluwer Academic Publishers, pp. 122, 1992.
[35] S. M. Sze, Semiconductor Sensors, John Wiley and Sons, pp. 388-396, 1994.
[36] J. Ding, T. J. McAvoy, R. E. Cavicchi, S. Semancik, “Surface state trapping models for SnO2-based microhotplate sensors,” Sensors and Actuators B, Vol. 77, pp. 597-613, 2001.
[37] J. Wateson, K. Ihokura, “The tin dioxide gas sensor,” Meas. Sci. Technol., Vol. 4, pp. 711-719, 1993.
[38] I. Simon, N. Barson, Michael Bauer, Udo Weimar, “Micromachined metal oxide gas sensors: opportunities to improve sensor performance,” Sensors and Actuators B, Vol. 73, pp. 1-26, 1993.
[39] N. Barsan, U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics, Vol. 7, pp. 143-167, 2001.
[40] S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe, “Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors,” Japanese Journal of Applied Physics, Vol. 27, No.10, pp. 1798-1802, 1988.
[41] N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sensors and Actuators B, Vol. 5, pp. 7-19, 1991.
[42] 陳美杏,吳建中,李國賓,羅錦興, “應用於新生兒能量消耗量測系統之微型氧氣感測器,” 第十九屆機械工程研討會, 2002.
[43] E. Obermeier, P. Kopystynski, “Polysilicon as a material for microsensor applications,” Sensors and Actuators A, Vol. 30, pp. 149-155, 1992.
[44] S. M. Sze, Semiconductor devices physics and technology, John Wiley and Sons, 2nd Edition, 2002.
[45] G. T. A. Kovacs, Micromachined Transducers Sourcesbook, McGraw-Hill , pp. 79, 1998.
[46] M. Madou, Fundamentals of Microfabrication, CRC Press LLC, pp. 261, 1997.
[47] S. M. Sze , ULSI Technology, McGraw-Hill , pp. 168, 1996
[48] Chien-Chung Wu, Gwo-Bin Lee, Mei-Hsing Chen, Ching-Hsing Luo,” Micromachined oxygen gas sensors for microscopic energy consumption measurement systems,” Journal of Micromechanics and Microengineering, 2003, submitted.
[49] Chien-Chung Wu1, Mei-Hsing Chen , Ching-Hsing Luo, Gwo-Bin Lee, ”Design and Fabrication Issues on Micromachined Oxygen Sensors for Microscopic Energy Consumption Measurement Systems,” Sensors and Materials, 2003, submitted.