簡易檢索 / 詳目顯示

研究生: 施政杰
Shih, Cheng-Chieh
論文名稱: 能量式液化評估模式之研究
Evaluation of Liquefaction Probability by Energy Method
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 119
中文關鍵詞: 能量液化評估
外文關鍵詞: energy, evaluation of liquefaction
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 土壤液化潛能分析法中,簡易經驗評估法為工程界所常利用。這一類分析方法對於地震所引致剪應力之計算多涉及地震規模和地表加速度,以往許多研究皆將兩個參數指定一保守數值來進行分析,但土壤液化是一種全面而廣泛的現象,地表加速度隨著距離震源越遠而遞減,對於廣泛區域之液化分析,將上述兩參數固定雖有其簡化分析之效果,但較不具合理性。基於此,本研究嘗試引入地震能量的觀點來評估液化潛勢,運用震波能量(seismic wave energy)原理來探討斷層帶周邊土層液化發生的可能性。本研究使用三種不同的方式來預估地震能量:方法一係將國外學者所提出的能量經驗公式進行推導並計算地震能量;方法二利用數值模擬評估程式SUMDES計算受震時,土層中的超額孔水壓增量,代入經驗公式中計算地震能量;方法三利用倒傳遞類神經網路模擬地震加速度傅立葉頻譜,並積分求得地震能量。本研究運用多變量分析中的判別分析與自行定義兩種方式訂定液化判別分界線,用以判定相對於特定能量與 值下液化與否。另外,藉由統計學中的 常態分佈與多變量中的判別分析計算液化機率,配合現場試驗數據,建立液化評估之經驗準則,並據以發展風險評估模式。本研究結合地理資訊系統的空間繪圖功能,展繪出液化潛勢分區圖。研究結果顯示本研究提出之評估模式有合理之液化評估能力,將可擴展應用於大地工程理論與實務設計時之參考。

    This paper presents a seismic wave energy-based method with back-propagation networks to assess the liquefaction probability. The empirical equation and Fourier spectrum are employed respectively to calculate the seismic wave energy. The discriminant analysis is used to determine the equation in separating the cases with and without liquefaction. The results reveal that the proposed method shows capability in evaluating the probability of soil liquefaction based on the established boundary line and the application of logarithm normal distribution. Furthermore, the geography information system is utilized to geographically present the liquefaction potential and the maps compare favorably to in situ liquefaction areas induced by 1999 Chi-Chi earthquake in central Taiwan.

    摘要 I 誌謝 II 目錄 III 表目錄 VII 圖目錄 VIII 符號 XI 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 3 1.4研究流程 4 1.4.1 資料之蒐集 4 1.4.2 能量法公式之推導與應用 4 1.4.3 液化機率之計算 5 1.4.4 地理資訊系統之結合與應用 5 1.5研究內容 5 第二章 文獻回顧 8 2.1土壤液化之定義 8 2.2土壤液化機制 10 2.3影響土壤液化之因素 10 2.3.1 土壤本身特性 11 2.3.2 外力之作用 12 2.4土層液化潛能評估法 13 2.4.1 簡易準則分析法 13 2.4.2 簡易經驗分析法 14 2.4.3 各種SPT簡易經驗法之比較 22 2.4.4 總應力分析法 28 2.4.5 有效應力分析法 28 2.4.6 機率模式液化潛能評估法 29 2.4.7 能量式液化評估法 29 第三章 類神經網路模式應用 30 3.1類神經網路簡介 30 3.1.1 類神經網路原理 30 3.1.2 類神經網路分類 32 3.2倒傳遞類神經網路基本架構 33 3.2.1 倒傳遞網路基本組成單元 34 3.2.2 倒傳遞網路類神經演算法 35 3.2.3 倒傳遞類神經網路特性 36 第四章 研究方法 38 4.1地震能量評估模式之建立 38 4.1.1 經驗式能量法 39 4.1.2 數值模擬經驗能量法 41 4.1.3 傅立葉頻譜積分能量法 49 4.2液化判定準則之建立 55 4.3液化機率之評估 57 4.3.1 常態分配液化機率之計算 57 4.3.2判別分析液化機率之計算 59 第五章 能量原理應用於液化潛勢評估模式之建立 63 5.1資料庫之建立 63 5.1.1 經驗式能量法資料之蒐集與整理 63 5.1.2 數值模擬經驗能量法資料之蒐集與整理 63 5.1.3 傅力葉頻譜積分能量法資料之蒐集與整理 64 5.2資料之運算 66 5.2.1 經驗式能量法資料運算 66 5.2.2 數值模擬經驗能量法資料運算 66 5.2.3 傅立葉頻譜積分能量法資料運算 66 5.3液化判別圖之繪製 78 5.2.1 經驗式能量法液化判定準則之建立 79 5.2.2 數值模擬經驗能量法液化判定準則之建立 82 5.2.3 傅立葉積分能量法液化判定準則之建立 86 5.3液化機率評估 89 5.3.1 常態分配求取液化機率 89 5.3.2 判別分析求取液化機率 90 5.4液化潛勢分區圖之展繪 90 第六章 結論與建議 95 6.1結論 95 6.2建議 97 參考文獻 101 附錄一 土壤液化鑽孔資料 106 附錄二 地震測站基本資料 108 附錄三 強震儀種類 110 附錄四 鑽孔與測站距離 111 附錄五 SUMDES計算最大超額孔水壓 112 附錄六 訓練前後積分能量比較表 114 附錄七 三種能量法之C(N)值比較 115 附錄八 液化機率 117

    1. 蔡維倫,「地震能量於液化評估準則建立之應用」,國立成功大學土木工程研究所碩士論文(2002)。

    2. 辜炳寰,「類神經網路於土壤液化評估之應用」,國立成功大學土木工程研究所碩士論文(2002)。

    3. 陳柏仁,「高雄市地表加速度受局部地質影響之探討與土層液化潛能評估」,國立成功大學土木工程研究所碩士論文(2001)。

    4. 張朝盛,「土壤液化潛能之類神經網路分析」,國立交通大學土木工程研究所碩士論文 (2000)。

    5. 胡德欽,「台北盆地現場飽和砂性土壤液化潛能分析」,現代營建,第5卷第六期,第34-45頁(1984)。

    6. 葉怡成,「類神經網路模式應用與實作」,儒林書局,民國91年。

    7. 施保旭,「地理資訊系統」,儒林書局,民國87年。

    8. 陳順宇,「多變量分析」,華泰書局,民國89年。

    9. 陳俶季,「土壤液化潛能之風險評估」,地工技術雜誌,第38期,第5~16頁(1992)。

    10. 萬明憲,「台南地區液化潛能評估」,國立成功大學土木工程研究所碩士論文(2001)。

    11. Bommer, J. J., Scott, S. G. and Sarma, S. K., “Hazard-Consistent Earthquake Scenarios,” Soil Dynamics and Earthquake Engineering 19, pp. 219-231(2000).

    12. Burrough, P. A., “Principles of Geographical Information Systems for Land Resources Assesment”, Oxford university Press, New York(1986).

    13. Casagrande, A., “Characteristics of Cohesionless Soil Affecting the Stability of Slope and Earth Fills,” Journal of the Boston Society of Civil Engineering, reprinted in Contributions to Soil Mechanics, Boston Society of Civil Engineering, pp. 257-276(1936).

    14. Cooley, P.M., and Tukey, J.W., “An Algorithm for the Machine Computation of Complex Fourier Series,” Mathematics of Computation, Vol. 19, No. 4, pp. 297-301(1965).

    15. Davis, R. O. and Berrill J. B., “Energy Dissipation and Seismic Liquefaction in Sands,” Earthquake Engineering and Structure Dynamics, Vol. 10, pp. 59-68(1982).

    16. D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning internal representation by error propagation,” in Parallel Distributed Processing, D. E. Rumelhart and McClelland (Eds), MIT, Press, Cambridge, MA, Vol. 1, pp.318-362, (1986).

    17. Drummond, J. E., “Determining and Processing Quality Parameters in GISs,” University of Newcastle upon Tyne, Ph.D. Thesis(1991).

    18. Esteva, L., “Seismic Hazard and Seismic Design Decisions,” in R.J. Hansen , ed., Seismic Design of Nuclear Power Plant, MIT Press, Cambridge, Massachusetts(1970).

    19. Gusev, A. A., “Descriptive statistical model of earthquake sourse radiation and its application to an estimation of short-period strong motion,” Geophys. J. R. Astr. Soc., 74, pp. 787-808(1983).

    20. Gutenberg, B and Richter, C. F., “Frequency of Earthquakes in California,” Bulletin of the Seismological Society of America, Vol. 34, No. 4, pp. 1985-1988(1944).

    21. Gutenberg, B. and Ritcher, C. F., “Seismicity of the Earth”, Princeton University Press(1954).

    22. Gutenberg, B. and Richter, C. F., “Magnitude and Energy of Earthquale,” Ann. Geofits. 9, pp. 1-15(1956).

    23. Hardin, B. D., “The Nature of Damping in Sands,” Journal of Soils Mechanics and Foundation Engineering Div., ASCE 91, SM1, pp. 63-97(1965).

    24. Ishihara, K., “Stability of Natural Deposit During Earthquakes,” Proc., 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 321-376(1985).

    25. Iwasaki, T., “Soil Liquefaction Study in Japan: State-of-the-Art,” Soil Dynamics and Earthquake Engineering, Vol.5, No. 1(1986).

    26. Iwasaki, T., Tatsouoka, F., and Takagi, Y., “Shear Moduli of Sand Under Cyclic Torsional Shear Loading,” Soils and Foundations, Vol.18, No. 14, pp. 1-18(1978).

    27. Kavazanjian, E. Jr., Roth, R.A. and Echezuria, H., “Liquefaction Potential Mapping for San Francisco,” Journal of Geotechnical Engineering, Vol. 111, No. 1, Jan. pp. 54-76(1985).

    28. Li, X. S., Wang, Z. L. and Shen, C. K., “SUMDES, a Nonlinear Procedure for Response Analysis of Horizontally-Layered Sites Subjected to Multi-Directional Earthquake Loading” Report to the Department of Civil Engineering, University of California, Davis(1992).

    29. Monge, O., Chassagneux, D. and Mouroux, P., “Methodology for Liquefaction Hazard Studies: New Tool and Recent Applications,” Soil Dynamics and Earthquake Engineering 17, pp. 415-425(1998).

    30. Mulilis, J.P., Mori, K., Seed, H.B., and Chan, C.K., “Resistance to Liquefaction Due to Sustained Pressure,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No.GT7, pp. 793-797(1977).

    31. Nemat-Nasser, S. and Shokooh, A., “A Unified Approach Densification and Liquification of Cohesionless Sand in Cyclic Shearing,” Canadian Geotech. J. 16, 659-678(1979).

    32. Peck, R. B., Hanson, W. E. and Thornburn, T. H. “Foundation Engineering,” Wiley , New York(1974).

    33. Seed, H.B., and Idriss, I.M., “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8 pp. 1249-1273(1971).

    34. Seed, H.B., Mori, K., and Chan, C.K., “Influence of Seismic History on the Liquefaction Characteristics of Sands, ”Report No. EERC 75-25, Earthquake Research Center, University of California, Berkeley, California(1975a).

    35. Seed, H.B. Peacock, ”Test Procedure for Measuring Soil Liquifaction Characteristics,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1099-1119(1971).

    36. Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M., “The Influence of SPT Procedure in Soil Liquefaction Resistance Evaluation,” Report No. EERC 84-15, Earthquake Research Center, University of California, Berkeley, California(1984).

    37. Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 111, No. 12, pp. 1425-1445(1985).

    38. Seed, H.B., Ugas, C., and Lysmer, J., “Site-
    Dependent Spectra for Earthquake-Resistant Design,” Bulletin of the Seismological Society of America, Vol. 66, No. 1, pp. 221-243(1976).

    39. Sherif, M.A., Ishibashi, I., and Tsuchiga, C., “Saturated Effects on Initial Soil Liquefaction,” Journal of the Geotechnical Engineering Division, Vol. 103, No. 8, pp. 914-917(1977).

    40. Star, J. and Estes, J., “Geographic Information System: An Introduction”, Pretice-Hall(1990).

    41. Todorovska, M. I. And Trifunac, M. D., “Liquefaction Opportunity Mapping Via Seismic Wave Energy,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 12, December, pp.1032-1042(1999).

    42. Tokimatsu, K., and Yoshimi, Y., “Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content,” Soils and Foundations, JSSMFE, Vol. 23, No. 4, pp. 56-74(1983).

    43. Trifunac, M. D., “Stress Estimates for San Fernando, California, Earthquake of Feb. 9, 1971; Main Event and Thirteen Aftershocks,” Bull, Seism. Soc. Amer., 62, pp. 721-750(1972a).

    44. Trifunac, M. D., “Tectonic Stress and Sourse Mechanism of the Imperical Valley, California, Earthquake of 1940,” Bull, Seism. Soc. Amer., 62, pp. 1283-1302(1972b).

    45. Trifunac, M. D., “Preliminary Analysis of the Peaks of Strong Earthquake Ground Motion –Dependence of Peaks on Earthquake Maginitude, Epicentral Distance, and the Recording Site Conditions,” Bull. Seism. Soc. Amer., 66, pp 189-219(1976a).

    46. Trifunac, M. D., “Preliminary Empirical Model for Scaling Fourier Amplitude Spectra of Strong Motion Acceleration in Terms of Modified Mercalli Intensity and Geologic Site Condition, Int. J. Earthquake Eng. And Struct. Dynamics, 7, pp. 75-83(1979).

    47. Trifunac, M. D., “Dependence of Fourier Spectrum Amplitudes of Recorded Earthquake Accelerations on Magnitude, Local Soil Conditions and on Depth of Sediments,” Earthquake Eng. And Struct. Dynamics, vol. 18, pp. 999-1016(1989).

    48. Trifunac, M. D., “How to Model Amplification of Strong Earthquake Motions by Local Soil and Geologic Site Conditions,” Earthquake Eng. And Struct. Dynamics, vol. 19, pp. 833-846(1990).

    49. Trifunac, M. D., “Long Period Fourier Amplitude Spectra of Strong Motion Acceleration,” Soil Dynamics and Earthquake Engineering 12, pp. 363-382(1993).

    50. Trifunac, M. D., “Empirical Criteria for Liquefaction in Sands Via Standard Penetration Tests and Seismic Wave Energy,” Soil Dynamics and Earthquake Engineering 14, pp. 419-426(1995).

    51. Trifunac, M. D. and Lee, V. W., “Dependence of the Fourier Amplitude Spectra of Strong Motion Acceleration on the Depth of Sedimentary Deposits”, Dept. of Civil Eng., Report No. 78-14, Univ. South California, Los Angeles, California(1978).

    52. Trifunac, M. D. and Lee, V. W., “Frequency Dependent Attenuation of Strong Earthquake Ground Motion”, Dept. of Civil Eng., Report No.85-02, Univ. South California, Los Angeles, California(1985).

    53. Trifunac, M. D. and Lee, V. W., “Empirical Models for Scaling Fourier Amplitude Spectra of Strong Motion Acceleration in Terms of Earthquake Magnitude Source to Station Distance, Site Intensity and Recording Site Conditions,” Soil Dynamics and Earthquake Engineering, Vol. 8, No. 3, pp. 110-125(1989).

    54. Yanev, P. I., “Peace of Mine in Earthquake Country-How to Save your Home and Life”. Chronicle Books, San Francisco(1991).

    55. Youd, T. L. and Perkin, D. M., “Mapping of Liquefaction Severity Index,” Journal of Geotechnical Engineering, Vol. 113, No. 11, November, pp. 1374-1392(1987).

    下載圖示 校內:2005-07-09公開
    校外:2005-07-09公開
    QR CODE