| 研究生: |
饒栗宇 Jao, Li-Yu |
|---|---|
| 論文名稱: |
軟性電路板製程改善對振動耐受之研究 Bonding process improvement for vibration resistance of flexible printed circuit board |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 軟性電路板 、液晶顯示器 、振動毀損 |
| 外文關鍵詞: | flexible printed circuit (FPC), TFT-LCD, vibration |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本究主要探討軟性電路板(Flexible Printed Circuit, FPC),作為液晶顯示器,信號與電路傳遞之元件,在業界現行的高振動次數生產與使用條件下,對元件耐振動毀損對策之探討。
於大量樣本觀察時,發現液晶顯示器內置軟性電路板,主要毀損項目分為接合介面脫落與傳導線路斷裂兩種,故針對此二項目,進行五項能增強液晶顯示器內部軟性電路板抗振動能力的設計變更;並將關聯對策合併後,設計出五項實驗進行驗證與說明。
研究工具包含拉力測試、光學顯微鏡成像分析…等,和在有限條件下的單邊條件實驗設計、計次性振動與繞折破壞實驗…等驗證手法;並將此些各自獨立的對策案件,分為設計變更類:FPC疊構、導線垂直引道(Via)位移、金屬接合(Bonding)介面面積增加、印刷電路板(Printed Circuit Board, PCB)固定螺絲;與製程變更類,異方性導電膠膜(Anisotropic Conductive Film, ACF)位置變更、接合位置變更、接合條件改善…等多項對策;再將每一個獨立對策進行實驗確認,得到各分項目皆能有效提升FPC的耐振動能力;最終再將總和對策完成品,與對完全未對策前的樣品進行耐振動能力比較。
最終使用全對策樣品實際成果,證明總和此些對策項目可有效提高液晶顯示器中,軟性電路板的抗振動能力,來達到強健製程的目標。
In this study, we investigate the damage mechanism of flexible printed circuit board (FPC) the TFT-LCD fab production process first and then resolve the damage by suitable methods.
From the fab production data, the FPC damage originated from vibration in the production process. In order to improve vibration resistance ability of FPC, both the flexible circuit board structure and process parameters were adjusted under the condition of using the current process equipment. Five methods were proposed to optimize the process recipe which were individually tested first and then variously combined for their different effectiveness using the vibration tests for damage.
The impact of individual programs on the results is obtained via the t-test comparison, and the experimental results were confirmed by comparing the vibration resistance ability of the integrated approach with the initial sample. The results show that each individual approach can improve the vibration resistance of the FPC. Furthermore, the integrated approach improve the vibration resistance ability considerably and is successfully implemented for field applications.
[1] Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N., & Diakopoulos, N. (2016). Designing the user interface: strategies for effective human-computer interaction. Pearson..
[2] https://www.ndc.gov.tw/News_Content.aspx?n=01B17A05A9374683&sms=32ADE0CD4006BBE5&s=C3B05892C0942B67 。國家發展委員會,2019/08/30 查詢
[3] https://www.mol.gov.tw/statistics/2452/2457/ 。 勞動部,國際勞動統計,勞動統計年報,2019/08/30 查詢
[4] Terukina, A., Hayashi, K., Fujii, Y., Ikezaki, M., Kurihara, M., Kiyooka, F., & Iiyori, H. (2003). U.S. Patent No. 6,624,868. Washington, DC: U.S. Patent and Trademark Office.
[5] Davis, C. R., Hsiao, R., Loomis, J. R., Park, J. M., & Reid, J. D. (1995). U.S. Patent No. 5,421,507. Washington, DC: U.S. Patent and Trademark Office.
[6] 御影勝成, 奥田泰弘, 小山惠司, & 松田龍男. (2016). 薄型・ 簡易接続可能なフレキシブルフラットケーブル. SEI テクニカルレビュー, (188), 112-116.
[7] 山口豊, 塚越功, & 中島敦夫. (1989). 異方導電フィルム. サーキットテクノロジ, 4(7), 362-370.
[8] Long B. & Xu X. M. (2010). U.S. Patent Application No. 29 345.699.
[9] 高野政晴. (1986). ロボット機構系の設計. 日本ロボット学会誌, 4(4), 394-400.
[10] 松弘, & 高田健介.於精密工学会学術講演会講演論文集 2012 年度精密工学会秋季大会 (pp. 639-640)
[11] 後藤聡, 松山裕一, 中村政俊, & 久良修郭. (2004). 産業用多関節ロボットアームの慣性と摩擦と重力の独立補償を図ったフォースフリー制御. 精密工学会誌論文集, 70(11), 1381-1386.
[12] 梅本敏孝, 加門守人, & 香川洋一郎. (2011). 適応ノッチフィルタを用いたコンベアライン上での連続計量における精度の向上. 計測自動制御学会論文集, 47(10), 477-484.
[13] Liu, C., & Chen, Y. (2018). Combined S-curve feedrate profiling and input shaping for glass substrate transfer robot vibration suppression. Industrial Robot: An International Journal, 45(4), 549-560.
[14] 潘吉祥, 吳永仁(2013)。電容式微型振動發電器之設計與製造.2013 綠色科技工程與應用研討會
[15] 張起明...等21位作者(2016)。可靠度工程與管理手冊。台北市:品質學會
[16] 陳順宇, & 鄭碧娥. (1998). 統計學三版.台北市:華泰書局
[17] Bryant, H. E., Schultz, N., Thomas, H. D., Parker, K. M., Flower, D., Lopez, E., ... & Helleday, T. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature, 434(7035), 913.
[18] 唐麗英,王春和(2016)。從範例學習MINITAB統計分析與應用。新北市:碩博文化
[19] Tao, R., Hasan, S. A., Wang, H. Z., Zhou, J., Luo, J. T., McHale, G., ... & Liu, Y. (2018). Bimorph material/structure designs for high sensitivity flexible surface acoustic wave temperature sensors. Scientific reports, 8(1), 9052.
[20] Chen, H. P., Chen, C. C., & Chen, Y. C. (2010). U.S. Patent No. 7,779,539. Washington, DC: U.S. Patent and Trademark Office.
[21] https://www.kdi.tw/zh-tw/about.html 。 金頓科技 2019/08/30查詢
[22] Izumi, M., Yoshida, M., Kaneko, H., Ino, T., Komura, Y., Fujimoto, S., & Funabashi, K. (2009). U.S. Patent No. 7,495,866. Washington, DC: U.S. Patent and Trademark Office.
[23] Wang, H., Kow, J., Raske, N., de Boer, G., Ghajari, M., Hewson, R., ... & Culmer, P. (2018). Robust and high-performance soft inductive tactile sensors based on the eddy-current effect. Sensors and Actuators A: Physical, 271, 44-52.
[24] Campos-Zatarain, A., Hinton, J., Mirgkizoudi, M., Li, J., Harris, R., Kay, R. W., & Flynn, D. (2019). Extreme environment interconnects and packaging for power electronics. environments, 1, 3.
[25] Luu, T. T., Duan, A., Aasmundtveit, K. E., & Hoivik, N. (2013). Optimized Cu-Sn wafer-level bonding using intermetallic phase characterization. Journal of Electronic Materials, 42(12), 3582-3592.
[26] Bosco, N. S., & Zok, F. W. (2005). Strength of joints produced by transient liquid phase bonding in the Cu–Sn system. Acta materialia, 53(7), 2019-2027.
[27] Zhang, L., Liu, Z. Q., Chen, S. W., Wang, Y. D., Long, W. M., Guo, Y. H., ... & Liu, W. Y. (2018). Materials, processing and reliability of low temperature bonding in 3D chip stacking. Journal of Alloys and Compounds, 750, 980-995.
[28] 村山裕哉. (2017). ハーモニックドライブ®(波動歯車装置) について. 精密工学会誌, 83(8), 746-749.
[29] 岩崎誠, 飼沼諒, 山元純文, & 沖津良史. (2012). 波動歯車装置を含む位置決め機構の厳密な線形化手法による非線形補償. 精密工学会誌, 78(7), 624-630.
[30] Weber, X., Cuvillon, L., & Gangloff, J. (2015, May). Active vibration canceling of a cable-driven parallel robot in modal space. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1599-1604). IEEE.
校內:2049-01-01公開