| 研究生: |
賴建文 Lai, Chien-Wen |
|---|---|
| 論文名稱: |
動態四面體/稜鏡型網格之建立 Generation of Dynamic Tetrahedral/Prismatic Meshes |
| 指導教授: |
黃啟鐘
Hwang, Chii-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 四面體/稜鏡型網格 、動態網格 |
| 外文關鍵詞: | tetrahedral/prismatic meshes, dynamic grid |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在航空發展史上,建立多功能之多元化飛行器一直是人類之目標。除了現有固定翼飛行器外,振翅機與旋翼機一直吸引人們的注意力。為完成振翅機與旋翼機之研究,利用計算流體力學方法探討流場與空氣動力行為是目前重要之工作。為達到上述目的,網格之建立是必需的。本文採用CATIA電腦輔助設計軟體提供所需的幾何外型,並在表面建立非結構性三角形網格以形成邊界網格,最後結合劉和黃所發展之網格建立法,在整個流場區域中建立非結構性四面體網格,由於非結構四面體網格較難有效處理邊界層與紊流問題,因此在翼表面附近建立稜鏡型網格而其他區域以四面體分割。至於動態四面體/稜鏡型網格系統,採用剛體-可變形動態格點演算法處理格點位移。對於振翅翼拍撲/扭轉運動,已能利用本文所提出的方法成功地模擬出其運動行為。
During the history of aeronautic development, creating the versatile flight vehicle with multifunctional capabilities is always the goal of mankind. Besides the existing fixed-wing aircraft, the ornithopter and helicopter are always attracting the people’s interest. To accomplish the study of ornithopter and helicopter, the main work is to apply CFD to investigate the flow-field phenomena and aerodynamics. To achieve the foregoing goal, it is necessary to generate the mesh. The CAD software of CATIA is adopted in this thesis to provide geometry which we need. We use it to create the unstructured triangular meshes on surfaces of geometry to form the boundary meshes. Finally, we combine together the unstructured tetrahedral meshes which are created by adopting a strategy for unstructured mesh generation developed by Liu and Hwang in the whole flow domain. Because the unstructured tetrahedral meshes are difficult to efficiently treat the boundary-layer and turbulent flow problems, the prismatic meshes are created around the wing surface, and the other regions are divided into tetrahedrons. On the tetrahedral/prismatic mesh system, the rigid-deformable dynamic mesh algorithm is adopted to handle the grid displacement. The flapping/twisting motion has been simulated successfully by the presented method in this thesis.
【1】 James, D. D., “An Ornithopter Wing Design,” Canadian Aeronautics
and Space Journal, Vol. 40, No. 1, March 1994, pp. 10-18.
【2】 DeLaurier, J. D., “The Development and Testing of a Full-Scale
Ornithopter,” Canadian Aeronautics and Space Journal, Vol. 45, No. 2,
June 1999, pp. 72-82.
【3】 Http://www.ornithopter.net/index_e.html.
【4】 Stanford, S., Kornbluh, R., Low, T., Delaurier, J., Loewen, D., and
Zdunich, P., “Flapping Wing Flight Using Artificial Muscles,” NASA/DoD
Second Biomorphic Explorers Workshop Bioinspired Engineering of
Exploration Systems 2000, December 4-6, 2000.
【5】 McMichael, J. M., and Francis, M. S., “Micro Air Vehicles – Toward a
New Dimension in Flight,” Report to TTO, DARPA, Department of Defense,
USA, 1997.
【6】 Archer, R. D., Sapuppo, J., and Betteridge, D. S., “Propulsion
Characteristics of Flapping Wings,” Aeronautical Journal, September
1979, pp. 355-371.
【7】 DeLaurier, J. D., “The Development of an Efficient Ornithopter Wing,”
Aeronautical Journal, May 1993, pp. 153-162.
【8】 DeLaurier, J. D., “An Aerodynamic Model For Flapping-Wing Flight,”
Aeronautical Journal, April 1993, pp. 125-130.
【9】 Tuncer, H. I., and Platzer, F. M., “Thrust Generation due to Airfoil
Flapping,” AIAA Journal, Vol. 34, No. 2, February 1996, pp. 324-331.
【10】Smith, M. J. C., “Simulating Moth Wing Aerodynamics : Towards the
Development of Flapping-Wing Technology,” AIAA Journal, Vol. 34, No. 7,
July 1996, pp. 1348-1355.
【11】Jones, K. D., and Platzer, M. F., “Numerical Computation of Flapping-
Wing Propulsion and Power Extraction,” AIAA Paper 97-0826, 1997.
【12】Jones, K. D., Dohring, C. M., and Platzer, M. F., “Experimental and
Computational Investigation of the Knoller-Betz Effect,” AIAA Journal,
Vol. 36, No. 7, July 1998, pp. 1240-1246.
【13】Liu, H., and Kawachi, K., “A Numerical Study of Insect Flight,”
Journal of Computational Physics, Vol. 146, 1998, pp. 124-156.
【14】Shyy, W., Berg, M., and Ljungqvist, D., “Flapping and Flexible Wings
for Biological and Micro Air Vehicles,” Progress in Aerospace Sciences,
Vol. 35, 1999, pp. 455-505.
【15】Lomtev, I., Kirby, R. M., and Karniadakis, G. E., “A Discontinuous
Galerkin ALE Method for Compressible Viscous Flows in Moving Domains,”
Journal of Computational Physics, Vol. 155, 1999, pp. 128-159.
【16】Neff, M. F., and Hummel, D., “Euler Solutions for A Finite-Span
Flapping Wing, ”Conference on Fixed, Flapping and Rotary Wing Vehicles
at very low Reynolds Numbers,5th-7th, 2000.
【17】Ramamurti, R., and Sandberg, W. C., “Computational Study of 3-D
Flapping Foil Flows,” AIAA Paper 2001-0605, 2001.
【18】Jones, K. D., Duggan, S. J., and Platzer, M. F., “Flapping-Wing
Propulsion For A Micro Air Vehicle,” AIAA Paper 2001-0126,
2001.
【19】Lasek, M., Pietrucha, J., Zlocka, M., and Sibilski, K., “Analogies
Between Rotary and Flapping Wings From Control Theory Point of View,”
AIAA Paper 2001-4002, 2001.
【20】Togashi, F., Ito, Y., Murayama, M., Nakahashi, K., and Kato, T., “ Flow
Simulation of Flapping Wings of An Insect Using Overset Unstructured
Grid,” AIAA Paper 2001-2619, 2001.
【21】Gebert, G., Gallmeier, P., and Evers, J.,“ Equations of Motion for
Flapping Flight, ” AIAA Paper 2002-4872, 2002.
【22】Mittal, R., Utturkar, Y., and Udaykumar,H. S., “Computational Modeling
and Analysis of Biomimetic Flight Mechanisms,” AIAA Paper 2002-0865,
2002.
【23】Harada, M., “Calculation Method for Optimal Circulation Distribution on
A Finite Span Flapping Wing,” AIAA Paper 2002-3414, 2002.
【24】Lasek, M., Pietrucha, J., and Sibilski, K., “Micro Air Vehicle
Maneuvers As a Control Problem,” AIAA Paper 2002-0526, 2002.
【25】Jones, K. D., Castro, B. M., Mahmoud, O., Pollard, S. J., Platzer, M.
F., Neff, M. F., Gonet, K., and Hummel, D., “A Collaborative Numerical
and Experimental Investigation of Flapping-Wing Propulsion,” AIAA Paper
2002-0706, 2002.
【26】Lian, Y., Shyy, W., Viieru, D., and Zhang, B., “ Membrane Wing
Aerodynamics for Micro Air Vehicles,” Progress in Aerospace Sciences,
Vol. 39, 2003, pp. 425-465.
【27】Zeng, R., and Ang, H., “Aerodynamics Computation of Flapping-Wing
Simulating Bird Wings,” Journal of Nanjing University of Aeronautics
and Astronautics, Vol. 35, No. 1, Jan-Feb, 2003, pp. 6-12.
【28】Kirill, V. R., and Vladimir, A. R., “Aerodynamics of Flapping-Wing
Propulsors,” Progress in Aerospace Sciences, Vol. 39, 2003, pp. 585-633.
【29】Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y. C., and Ho, C. M.,
“Unsteady Aerodynamics and Flow Control for Flapping Wing Flyers,”
Progress in Aerospace Sciences, Vol. 39, 2003, pp. 635-681.
【30】Hover, F. S., Haugsdal, Q., and Triantafyllou M. S., “Effect of Angle
of Attack Profiles in Flapping Foil Propulsion,” Journal of Fluids and
Structures, Vol. 19, 2004, pp. 37-47.
【31】Lehmann F. O., “Aerial Locomotion in Flies and Robots: Kinematic
Control and Aerodynamics of Oscillating Wings,” Arthropod Structure and
Development, Vol. 33, 2004, pp. 331-345.
【32】Lohner, R., and Parikh, P., “Generation of Three-Dimensional
Unstructured Grids by the Advancing-Front Method,” International
Journal for Numerical Methods in Fluids, Vol. 8, 1998, pp.1135-1149.
【33】Waston, D. F., “Computing the N-Dimensional Delaunay Tessellation with
Application to Voronoi Polytopes,” Computer Journal, Vol. 24, No. 2,
1981, pp. 167-172.
【34】Liu, C. Y. and Hwang, C. J., “ New Strategy for Unstructured Mesh
Generation,” AIAA Journal, Vol. 39, No. 6, June 2001, pp. 1078-1085.
【35】Nakahashi, K. and Togashi F., “Intergrid-Boundary Definition Method for
Overset Unstructured Grid Approach,” AIAA Journal, Vol. 38, No. 11,
November 2000.
【36】Togashi, F., Nakahashi, K, Ito, Y., Shimbo, Y, and Iwamiya, T., “Flow
Simulation of NAL Experimental Supersonic Airplane/Booster Separation
Using Overset Unstructured Grids,” AIAA Paper 2000-1007, 2000.
【37】Togashi, F., Ito, Y., Nakahashi, K., and Obayashi, S., “Extensions of
Overset Unstructured Grids to Multiple Bodies in Contact,” AIAA Paper
2002-2809, 2002.
【38】Hwang, C. J. and Yang, S. Y., “Locally Implicit Total Variation
Diminishing Schemes on Mixed Quadrilateral-Triangular Meshes,” AIAA
Journal, Vol. 31, No. 11, November 1993, pp. 2008-2015.
【39】Hwang, C. J. and Yang, S. Y., “Inviscid Analysis of Transonic
Oscillating Cascade Flows Using a Dynamic Mesh Algorithm,” Journal of
Propulsion and Power, Vol. 11, No. 3, May-June 1995, pp. 433-440.
【40】Farhat, C., Degand, C., Koobus, B., and Lesoinne, M., “An Improved
Method of Spring Analogy For Dynamic Unstructured Fluid Meshes,” AIAA
Paper 98-2070, 1998.
【41】Murayama, M., Nakahashi, K., and Matsushima, K., “Unstructured Dynamic
Mesh for Large Movement and Deformation,” AIAA Paper 2002-0122, 2002.
【42】“CATIA Documentation,” DASSUALT SYSTEM, 2002.
【43】John, S., Nick, W., and John, C. P., “Development and Implementation of
Gridgen’s Hyperbolic PDE and Extrusion Methods,” AIAA Paper 2000-0679,
2000.
【44】Matsuno, K., “Hyperbolic Upwind Method for Prismatic Grid Generation,”
AIAA Paper 2000-1003, 2000.
【45】Kallinderis, Y., and Kwong S., “Viscous Grids and Assessment of their
Quality,” AIAA Paper 2001-2539, 2001.
【46】Pirzadeh, S., “Structured Background Grids for Generation of
Unstructured Grids by Advancing-Front Method,” AIAA Journal, Vol. 31,
No. 2, 1993, pp. 257-265.
【47】Zhang, S. J., Liu, J., and Chen, Y. S., “Adaptation for Hybrid
Unstructured Grid with Hanging Node Method,” AIAA Paper 2001-2657, 2001.
【48】Kim, K. S. and Paul G. A. C., “A Three-Dimensional Hybrid Mesh
Generation for Turbomachinery Airfoils,” AIAA Paper 2001-3209, 2001.
【49】Lepage, C. Y., France S. G., and Habashi, W. G., “Anisotropic 3-D Mesh
Adaptation on Unstructured Hybrid Meshes” AIAA Paper 2002-0859, 2002.
【50】Ito, Y. and Nakahashi K., “Unstructured Hybrid Grid Generation Based on
Isotropic Tetrahedral Grids,” AIAA Paper 2002-0861, 2002.
【51】Wong, A. S. F. and Tsai, H. M., “Unsteady Flow Calculations With a Muti-
Block Moving Mesh Algorithm,” AIAA Paper 2000-1002, 2000.
【52】Soni, B., Thompson D., Koomullil, R., and Thornburg, H., “GGTK: A Tool
Kit for Static and Dynamic Geometry-Grid Generation and Adaptation,”
AIAA Paper 2001-1164, 2001.
【53】Chasman, D. and Chakravarthy, S., “Computational and Experimental
Studies of Asymmetric Pitch/Plunge Flapping-The Secret of Biological
Flyers,” AIAA Paper 2001-0859, 2001.
【54】Michael, S. V. and Joseph K., “Unsteady Aerodynamic Model of Flapping
Wings,” AIAA Journal, Vol.34, No.7, July 1996.
【55】Lasek, M. and Sibilski, K., “Modeling and Simulation of Flapping Wing
Control For a Micromechanical Flying Insect (Entomopter),” AIAA
Modeling and Simulation Technologies Conference and Exhibit 5-8 August
2002, Monterey, California.
【56】Charles, A. L., Zhang, G. P., Thomas, F. G., and Claudine, F. L.,
“Physical Theory, Origin of Flight, and a Synthesis Proposed for
Birds,” Journal of Theoretical Biology, 224, 2004, pp. 9-26.
【57】王聖涵,“利用可調有限體積法探討穿音速旋翼葉片流場及噪音” 成功大學航太所
碩士論文,準備中。
【58】Cardonna, F. X. and Tung, C., “Experimental and Analytical Studies of
Model Helicopter Rotor in Hover,” NASA TM-81232, September 1981.
【59】楊世英, “在動態網格上以區域隱式法探討穿音速振動葉片流場” 成功大學航太
所博士論文,1993年6月。
【60】楊毅勇,“在四面體/稜鏡型網格上計算旋翼葉片黏性流場及噪音” 成功大學航太
所碩士論文,準備中。
【61】路非遙, “振動翼微型飛行載具之空氣動力特性測試與分析” 成功大學航太所碩
士論文,2001年8月。
【62】胡舉軍, “旋翼與振翅翼之數值研究” 成功大學航太所博士論文,2002年12月。
【63】薛嘉賢, “仿昆蟲拍翅飛行載具之轉翅時機實驗研究” 台灣大學應力所碩士論
文,2002年6月。