簡易檢索 / 詳目顯示

研究生: 曾姿錦
Tseng, Ze-Jing
論文名稱: 以共聚合乳膠固定化細胞進行厭氧產氫醱酵
Hydrogen fermentation with anaerobic cultures immobilized by polyurethane-polyurea copolymer
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 122
中文關鍵詞: 固定化細胞 ,生物產氫
外文關鍵詞: immobilized-cell ,biohydrogen production
相關次數: 點閱:82下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究以polyurethane-polyurea共聚合乳膠為細胞固定化基材,並結合其他附加材料如活性碳、幾丁聚醣等之添加,試圖開發高效能且能長期操作之厭氧產氫固定化細胞,以進行清潔能源—氫氣之生產。首先將較佳之固定化材質比例置入連續式反應器之進行連續式產氫實驗,測試此固定化細胞顆粒之產氫速率、機械強度及操作穩定性等情形之評比並探討不同水力滯留時間(HRT)對產氫效能之影響。結果顯示利用本研究所開發之固定化材質包覆產氫菌群,確實能利用在連續式產氫,且可獲得約1.66 L/h/L之高產氫速率。為進一步提升基質利用效率以增加氫氣產量,故設計二階段產氫程序,藉由添加活性碳、Ca2+等物質誘導第二階段反應槽中顆粒污泥之形成,以有效率地利用第一階段(CSTR)之殘餘基質進行產氫,藉此提升整體的產氫量。結果顯示當顆粒菌體形成時,確能提升氫氣產量;當進料基質濃度為30000 mg COD/L時,其最佳產氫效率可達6.8 L/h/L。此外,本研究進一步於產氫污泥中篩選出兼性菌Klebsiella sp.,且對其進行一連串的產氫條件測試,並將此兼性厭氧產氫菌固定化後以批次實驗測試其產氫效能。結果顯示該Klebsiella sp.菌株具有產氫能力,氫氣濃度約30%,而固定化後仍具有穩定且相似之產氫能力,且相較於混合菌相系統,利用Klebsiella sp.進行產氫之效果較為穩定,故可利用為產氫生物製劑以提升生物產氫程序之效率與穩定性。

    Abstract
    To increase the yield of biohydrogen production, a polyurethane-polyurea polymer was used to immobilize hydrogen-producing cells for continuous hydrogen fermentation. The performance of the immobilized-cell systems was assessed in terms of hydrogen production, mechanical strength and operation stability during operation at a hydranlic retention time (HRT) of 0.5-5 h. The results show that the immobilized-cell process can produce hydrogen gas in CSTR mode with a hydrogen production rate of ca. 1.66 L/h/L. To further enhance hydrogen production efficiency, a two-stage process was applied by addition of a granular sludge stage following the CSTR reactor. Activated carbon and Ca2+ were added at the second stage to enhance sludge granulation. The result shows that granule formation facilitated hydrogen production and the maximum hydrogen production rate was lifted up to 6.8 L/h/L. On the other hand, a facultative anaerobe, Klebsiella sp., was isolated from the hydrogen-production sludge, and the H2 production ability of the pure strain was examined with sucrose-based medium under different conditions using both suspended and immobilized culture of the strain. The results show that both suspended and immobilized cells of Klebsiella sp. can produce hydrogen with similar efficiency. The hydrogen content in the biogas was about 30%. The pure culture of Klebsiella sp. may be used as bioagent for H2-producing mixed cultures to enhance the stability and the productivity of hydrogen production.

    目 錄 中文摘要……………………………………………Ⅰ Abstract……………………………………………Ⅱ 致謝…………………………………………………Ⅲ 表目錄………………………………………………XI 圖目錄……………………………………………XIII 第一章緒論…………………………………………1 1-1 前言………………………………………1 1-2 研究動機與目的…………………………3 第二章文獻回顧 ..........................5 2-1 能源的種類與發展.....................5 2-2生物產氫 ............................10 2-2-1光合作用...........................10 2-2-2 光合細菌對有機物質進行光醱酵......12 2-2-3 厭氧醱酵產氫......................13 2-3產氫微生物..........................14 2-3-1、Clostridium sp...................24 2-4氫化酵素(Hydrogenase)...............26 2-5生物觸媒固定化技術...................28 2-5-1固定化技術之歷史...................28 2-5-2固定化技術.........................29 2-5-2-1選擇正確方法.....................30 2-5-2-2固定化方法.......................30 2-5-2-3固定化細胞擔體比較...............38 2-5-3 固定化細菌醱酵產氫 ...............40 第三章 實驗材料與方法...................43 3-1實驗材料.............................43 3-1-1 產氫污泥混合菌介紹 ...............43 3-1-2 產氫純菌介紹......................43 3-2 實驗藥品………………………………44 3-3實驗儀器……………………………………45 3-3-1. 常規儀器設備....................45 3-3-2.混合菌產氫之實驗儀器.............45 3-3-3.純菌Klebsiell sp.產氫之實驗儀器..46 3-4 分析儀器及方法…………………………47 3-4-1氣體組成分析.....................47 3-4-2液體組成分析.....................47 3-4-3菌量分析……………………51 3-4-3-1混合菌量分析...................51 3-4-3-2純菌量測定.....................51 3-4-3-3使用設備.......................51 3-5固定化污泥之杯瓶批次產氫實驗.………51 3-5-1 使用儀器與材料..................51 3-5-2 營養基質成分....................52 3-5-3固定化顆粒之製備.................53 3-5-3-1片狀之固定化污泥製備...........54 3-5-3-2球形之固定化污泥顆粒製備.......54 3-5-4添加不同比例活性碳片狀固定化污泥之 杯瓶產氫操作步驟......................55 3-5-5球形固定化污泥產氫實驗操作步驟...56 3-5-6 添加離心與未離心菌液之片狀固定化污 泥之杯瓶產氫實驗操作步驟..............56 3-5-6-1添加未離心菌液.................56 3-5-6-2添加離心菌液...................58 3-5-7 添加與未添加幾丁聚糖之球形固定化污 泥顆粒之杯瓶重覆批次產氫實驗步驟......58 3-5-7-1添加幾丁聚糖之球形固定化污泥顆粒 58 3-5-7-2未添加幾丁聚糖之球形固定化污泥顆粒59 3-5-8 固定化細胞........................59 3-6固定化污泥之CSTR連續式產氫實驗操作步驟60 3-6-1 污泥來源..........................60 3-6-1-1菌種污泥.........................60 3-6-1-2酸篩污泥.........................60 3-6-1-3 產氫污泥........................60 3-6-2 固定化污泥之製備..................61 3-6-3反應器裝置.........................61 3-6-4反應器操作方法.....................62 3-6-5改良式CSTR反應器 ..................62 3-7結合CSTR與顆粒污泥床二階段反應程序進行 共聚合乳膠固定化污泥之生物產氫實驗操作步驟……………………………………………….63 3-7-1固定化污泥顆粒製備方法............63 3-7-2培養基組成........................64 3-7-3反應器裝置........................64 3-7-3-1主體反應槽......................64 3-7-3-2誘發顆粒污泥槽..................65 3-7-4熱處理程序........................65 3-7-5反應器操作方法....................65 3-8兼性厭氧菌Klebsiella sp.之懸浮批次產氫 條件測試.............................. 65 3-8-1 不同起始pH值培養之Klebsiella sp.產氫 效能測試實驗操作步驟...................66 3-8-2 不同pH值控制培養之Klebsiella sp.產氫 效能測試實驗操作步驟...................68 3-8-3 不同碳源濃度下之Klebsiella sp.產氫效 能測試.................................68 3-8-4 不同Fe2+濃度之Klebsiella sp.產氫效能 測試實驗操作步驟.......................68 3-8-5 pH值控制7.5下饋料批次產氫流程與 Klebsiella sp.細胞生長流程.............69 3-9固定化Klebsiella sp.細胞之杯瓶批次產氫 實驗...................................70 3-9-1固定化Klebsiella sp.細胞之製作步驟70 3-9-2固定化Klebsiella sp.細胞杯瓶批次產氫 效能測試...............................71 3-9-2-1不同起始pH值對固定化Klebsiella sp. 細胞產氫實驗步驟.......................71 3-9-2-2不同碳源濃度對固定化Klebsiella sp. 細胞產氫效能實驗步驟...................72 第四章結果與討論......................73 4-1固定化污泥批次產氫測試..............73 4-1-1以添加不同比例活性碳之片狀固定化污泥 進行批次產氫...........................73 4-1-2片狀與球形固定化污泥產氫效能比較..74 4-1-3改變添加菌液條件之固定化污泥產氫效果 比較...................................74 4-1-4添加與未添加幾丁聚糖之固定化污泥產氫 效果比較...............................75 4-2以含固定化污泥之CSTR反應器進行連續式產 氫試驗.................................78 4-2-1以含固定化污泥之CSTR反應器進行第一次 連續式產氫.............................78 4-2-2以含固定化污泥之改良式CSTR反應器進行 連續式產氫.............................82 4-3結合CSTR與顆粒污泥床二階段程序進行共聚 合乳膠固定化污泥之生物產氫.............87 4-3-1改變HRT對CSTR/顆粒污泥床程序生物產氫 之影響.................................87 4-3-1-1 進料基質碳源濃度為20000 mg COD/L 系統之醱酵產氫.........................87 4-3-1-2進料基質濃度30000 mg COD/L系統之醱 酵產氫.................................88 4-3-2於氣液分離槽中誘發顆粒污泥形成與產氫 效果之探討.............................95 4-4兼性厭氣菌Klebsiella sp.之懸浮批次產氫 條件測試...............................99 4-4-1 不同起始pH值培養對Klebsiella sp.產 氫效能之影響...........................99 4-4-2 不同pH值控制下對Klebsiella sp.於產 氫效能之影響...........................99 4-4-3 不同碳源濃度培養對Klebsiella sp.產 氫效能之影響結果......................100 4-4-4 添加不同鐵離子濃度對Klebsiella sp. 產氫效能之影響…......................100 4-4-5進一步探討pH值控制7.5對Klebsiella sp. 產氫效率及細胞生長之影響..............101 4-5固定化Klebsiella sp.細胞之批次產氫效能 測試..................................109 4-5-1不同起始pH值及碳源濃度對Klebsiella sp. 固定化細胞產氫效能影響................109 第五章 結論…………………………………113 第六章 參考文獻……………………………115 自述.................................122

    參考文獻

    Appel J, Schulz R, Hydrogen metabolism in organisms with oxygenic photosynthesis, hydrogenase as important regulatory devices for a proper redox poising. Journal of Photochemistry and Photobiology B: Biology., 47, 1-11, (1998)

    Benemann JR, Feasibility analysis of photobiological hydrogen production. International Journal of Hydrogen Energy.,22 , 979-87, (1997)

    Benemann JR, Miyamoto K, Hallenbeck PC, Bioengineering aspects of biophotolysis. Enzyme Microbial Technology, 2, 103-110 , (1980)

    Benemann JR, Berenson JA, Kaplan NO, Kauren MD, Hydrogen evolution by a chloroplast-fereedoxin-hydrogenase system. Proceedings National Academy of Science, USA, 70, 231-250, (1973)

    Brosseau JD, Zajic JE , Continuous microbial production of hydrogen gas. International Journal of Hydrogen Energy, 7, 623-8 (1982)

    Brock TD, Madigan MT, Martinko JM, Parker J, Biology of Microorganisms. Pretice-Hall , Inc, USA (1994.)

    Chang J-S, Lee K-S, Lin P-J, Biohydrogen production with fiexed-bed bioreactor. International Journal of Hydrogen Energy, 27, 1167-1174 (2002)

    Das D, Veziroglu TN, Hydrogen production by biological process: a survey of literature. International Journal of Hydrogen Energy, 26, 13-28 (2001)

    Gaffron H, Rubin J, Fermentative and photochemical production of hydrogen by algae. Journal of General Physiology, 26, 219-40 (1992)

    Gaffron, H., Reduction of carbon dioxide with molecular hydrogen in green algae. Nature, 143, 204-205 (1939)

    Gottschalk G, Grupe H, Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Applied and Environmental Microbiology, 58, 3896-3902 (1992)

    Happe T, Kaminski A, Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. European Journal of Biochemitry, 269, 1022-1032 (2002)

    Herbert H.P. Fang , Hong Liu, Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82, 87-93 (2002)

    Jones D T, Woods DR, Acetone-butanol fermentation revisited, Microbiology Reviews, 50, 484-524 (1986)

    Kaminski A, Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. European Journal of Biochemitry, 269, 1022-1032 (2002)

    Kosaric N, Blaszczyk R, Microbial aggregates in anaerobic waster treatment. Journal of Water Pollution Control, 37, 97-166 (1990)

    Kumazawa S, Mitsui A, Characterization and optimization of hydrogen photoproduction by saltwater blue-green algae, Oscillatoria sp. Miami BG7: Enhancement through limiting the supply of nitrogen nutrient. Interantional Journal of Hydrogen Energy, 6, 339-348 ( 1981)

    Kumar N, Das D, Enhancement of hydrogen production by Enterobacter cloacae ⅡT-BT 08. Process Biochemistry, 35, 589-594 ( 1999)

    Kumar N, Das D, Production and purification of alpha-amylase from hydrogen producing Enterobacter cloacae ⅡT-BT 08, Bioprocess Engineering, 23, 205-208 (2000)

    Lambert GR, Smith GD, The hydrogen metabolism of cyanobacteria (blue-green algae). Biotechnology Progress, 56, 589-660 (1981)

    Menzel K, Zeng A-P, Deckwer W-D, Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae, Journal of Biotechnology, 56, 135-142, 1997

    Miyake J, Mao X-Y, Kawamura S, Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and clostridium butyricum. Journal of Biotechnology, 62, 531-535 (1984)

    Nakashimada M, Rachman A, Kakizono T, Nishio N, Hydrogen production of Enterobacter aerogenes altered by exteracellular and intracellular redox state. International Journal of Hydrogen Energy, 27, 1399-1405 (2002)

    Nicolet Y, Cavazza C, Fontecilla-Camps JC, Fe-only hydrogenase: Structure, fuction and evolution. Journal of Inorganic Biochemistry, 91, 1-8 (2002)

    Parkin GF, Owen WF, Fundamentals of anaerobic digestion of wastewater sludge. Journal of Environmental Engineering, 112, 867-885 (1986)

    Smith GD, Ewart GD, Tucker W, Hydrogen production by cyanobacteria. International Journal of Hydrogen Energy, 17, 695-8 (1992)

    Sarker S, Pandey KD, Kashyap AK., Hydrogen photoproduction by filamentous non-heterocystous cyanobacterium Pleatonema boryanna and simultaneous release of ammonia. International Journal of Hydrogen Energy, 17, 689-94 (1992)

    Solomon BO, Zeng A-P, Schlieker H, Posten C, Deckwer W-D, Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. Journal of Biotechnology, 39, 107-117 (1995)

    Stewar W, Some aspects of structure and function in N2-fixing cyanobacteria. Annunal Review of Microbiology, 34, 497-536 ( 1980)

    Streekstra, H, Teixera de Mattos, MJ, Neijssel, OM, Tempest, DW, Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat. Archieves of Microbiology, 147, 268-275 (1987)

    Tamagnini P, Axelsson R, Lindberg, P, Oxelfelt F, Wunschiers R, Lindblad P, Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiology and Molecular Biology, 66, 1-20 (2002)

    Tanisho S, Suzuki Y, Wakoo N, Fermentative hydrogen evolution by Enterobacter aerogenes strain E82005. International Journal of Hydrogen Energy, 12, 623-627 (1987)

    Ueno Y, Kurano N, and Miyachi S, Purification and characterization of hydrogenase from the marine green alga, Chlorococcum littorale. FEBS Letters, 443, 144-148 (1999)

    Vasconcelos, I., Girbal, L. and Soucaille, P., Regulation of carbon and electron flow in Clostridium acetobutylicum grow in chemostat culture at neutral pH on mixture of glucose and glycerol. Journal of Bacteriology, 176, 1443-1450 (1994)

    Vignais P, Billoud B, Meyer J, Classification and phylogeny of hydrogenases FEMS Microbiology Reviews, 25, 455-501 (2001)

    Winkler M, Heil B, Happe, T., Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta., 1576, 330-334 (2002a)

    Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T, Fe-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International Journal of Hydrogen Energy, 27, 1431-1439, (2002b)

    Weare NM, Benemann JR, Nitrogenase activity and photosynthesis by Plectonema boryanum 594. Jouranl of Bacteriology, 119, 158-68 (1874)

    Wu S-Y, Lin C-N, Chang J-S, Hydrogen production with immobilized sewage sludge in three phase fluidized-bed bioreactors. Biotechnology Progress, 19, 828-832 (2003)

    Wu S-Y, Lin C-N, Chang J-S, Lee K-S, Lin P-J, Microbial hydrogen production with immobilized sewage sludge. Biotechnology Progress, 18, 921-926 (2002)

    Nicolet Y, Cavazza C, Fontecilla-Camps JC, Fe-only hydrogenases: structure, function and evolution. Journal of Inorganic Biochemistry, 91, 1-8 (2002)

    Yokoi H, Ohkawara T, Hirose J, Hyashi S, Takasaki Y, Characteristics of Hydrogen Production by Aciduric Enterbacter aerogenes strain HO-39, Journal of Fermentation and Bioengineering, 80, 6, 571-574 (1995)

    Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y, H2 production from starch by a mixed culture of Clostridium butyricum and Entobacter aerogenes. Biotecbnology Letters, 20, 143-147 (1998)

    Yu H-Q, Tay JH, Fang HHP, The roles of calcium in slodge granulation during UASE reactor start-up. Elsevier Science Ltd., 35, 4, 1052-1060 (2001)

    白明德,厭氧生物產氫機制與程序操作策略之研究,國立成功大學環境工程研究所碩士論文,(1999)
    田蔚城,生物技術的發展與應用,九州圖書文物有限公司,121~133,(1998)
    李國興 羅泳中 羅泳勝 林屏杰 張嘉修,顆粒污泥程序醱酵產氫長期穩定操作之策略探討,第八屆生化工程研討會論文集 (2003)
    吳晟,二月號能源報導期刊 (2004)
    林祺能,固定化細胞產氫,逢甲大學化學工程研究所,碩士論文 (2002)
    陳晉照,CSTR系統厭氧產氫之研究,逢甲大學土木及水利工程研究所,博士論文 (2001)
    陳國成,環境科學概論,大中國出版社,台北 (1996)
    許淳鈞,利用混合特定菌種生產氫氣之研究,國立中央大學化學工程研究所,碩士論文 (2001)

    下載圖示 校內:2007-08-30公開
    校外:2009-08-30公開
    QR CODE