| 研究生: |
王俊智 Wang, Jun-Zhi |
|---|---|
| 論文名稱: |
光子晶體之光塞取濾波器 A channel drop filter in a two-dimensional photonic crystal |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 光塞取濾波器 、光子晶體 |
| 外文關鍵詞: | photonic crystal, channel drop filter |
| 相關次數: | 點閱:59 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,利用介電質圓柱以正方晶格排列而成的二維光子晶體設計一光塞取濾波器。光塞取濾波器主要由兩部份所組成,一為在晶體內置入線缺陷形成的光波導元件,另一為頻率選擇元件,由在晶體中形成共振腔而成。
首先在頻率域利用平面波展開法計算出所設計之晶格排列下的光子晶體能隙。接著,利用時域有限差分法配合一完美匹配層的邊界條件來模擬光塞取濾波器的動態特性。由數值模擬的結果證實此濾波器能有效率地塞取特定的波長。
A design of a channel drop filter in a two-dimensional photonic crystal with a square lattice of dielectric rods is presented. The system consists of two parts, one is waveguiding elements realized by linear defects in a photonic crystal, and the other is frequency-selective elements realized by photonic crystal microcavities.
First, we compute the photonic crystal bandgap of the lattice configuration used to design the filter by the plane wave expansion method( PWM ) in the frequency domain. Then, the finite difference time domain numerical simulations of the dynamic behavior of the filter are obtained. The perfectly matched layer boundary conditions are applied. Numerical results demonstrate that the filter exhibit very efficient transfer characteristics.
參考文獻
[1]E. Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[2]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[3]K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413-416 (1994).
[4]S. Y. Lin and J. G. Fleming, “A Threee-Dimensional Optical Photonic Crystal,” J. Lightwave Technol. 17, 1944-1947 (1999).
[5]S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, “Alignment and Stacking of Semiconductor Photonic Bandaps by Wafer-Fusion,” J. Lightwave Technol. 17 1948-1955 (1999).
[6]J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282, 1476-1478 (1998).
[7]K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152-3155 (1990).
[8]E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295-2298 (1991).
[9]M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimesional photonic band structures,” Opt. Commun. 80, 199-204 (1991).
[10]M. Plihal, and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[11]P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306-322 (1995).
[12]C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[13]X. Wang, X. G. Zhang, Q. Yu, B. N. Harmon, “Multiple-scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[14]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals(Princeton U. Press, Princeton, N. J., 1995).
[15]A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[16]S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal,” Science 282, 274-276 (1998).
[17]J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals and lightwave devices using the scattering matrix method,” J. Lightwave Technol. 17, 1500-1508 (1999).
[18]S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162-165 (2001).
[19]H. Takeda, and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals composed of semiconductors depending on temperature,” Opt. Commun. 219, 177-182 (2003).
[20]A. Chutinan, and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488-4492 (2000).
[21]P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996-2001 (2003).
[22]S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80, 960–963 (1998).
[23]S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000).
[24]M. Tokushima, and H. Yomada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37, 1454-1455 (2002).
[25]M. Koshiba, “Wavelength Division Multiplexing and Demultiplexing With Photonic Crystal Waveguide,” J. Lightwave Technol. 19, 1970-1975 (2001).
[26]M. Qiu, and M. Swillo, “Contra-directional coupling between two-dimensional photonic crystal waveguides,” Photonic and Nanostructures - Fundamentals and Applictions 1, 23-30 (2003).
[27]B. S. Song, S. Noda, and T. Asano, “Photonic Devices Based on In-Plane Hetero Photonic Crystals,” Science 300, 1537 (2003).
[28]C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, Y. Jeon, G. Barbastathis, S. G Kim, E. P. Ippen, and L. C. Kimerling, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84, 1242-1244 (2004).
[29]K. Busch, “Photonic band structure theory : assessment and perspectives,” C. R. Physique 3, 53-66 (2002).
[30]S.G. Johnson, and J. D. Joannopoulos, “Designing synthetic optical media: photonic crystals,” Acta Materialia 51, 5823-5835 (2003).
[31]S. Guo, and S. Albin, “Simple plane wave implementation for photonic crystal calculation,” Opt. Express 11, 167-175 (2003).
[32]K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations In Isotropic Media,” IEEE Trans. Antennas Propagat. AP-14, 802-807 (1966).
[33]J. B. Berenger, “A Perfectly Matched Layer for Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185-200 (1994).
[34]Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460-1463 (1995).
[35]S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propagat. 44, 1630-1639 (1996).
[36]A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method.( Norwood, MA: Artech House, 1995).
[37]T. Uusitupa, K. Karkkainen, and K. Nikoskinen, “Studying 1200 PBG waveguide bend using FDTD,” Microwave Opt. Technol. Lett. 39, 326-333 (2003).
[38]P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[39]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).