| 研究生: |
賴珏年 Lai, Chueh-Nien |
|---|---|
| 論文名稱: |
適用於土石流地聲量測之光纖光柵感測器之發展與應用 Development and Application of Fiber Bragg Grating Sensors for Detecting Ground Vibrations Generated by Debris Flows |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 光纖光柵感測器 、桑克與馬赫-詹德干涉儀 、地聲 、土石流 |
| 外文關鍵詞: | FBG, Sagnac and Mach-Zehnder hybrid interferometer, ground vibration, debris flow |
| 相關次數: | 點閱:147 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要為利用桑克(Sagnac)與馬赫-詹德(Mach-Zehnder)混合式干涉儀發展布拉格光纖光柵感測器(Fiber Bragg Grating Sensor),用於土石流地聲之監測,感測器為參考前人發表應用光纖光柵感測器量測加速度之文獻,加以改良設計而成,其構型分別為三明治型光纖光柵感測器、雙樑型光纖光柵感測器以及懸臂樑型光纖光柵感測器。試驗方法為利用干涉光路系統搭配感測器於實驗室進行石頭撞擊礫石底床之測試,並與目前用來量測土石流地聲之地聲檢知器(Geophone)做比較。待實驗室測試分析結果證實可行後,擇ㄧ現地土石流觀測站進行現地試驗,本研究之現地測試位於南投縣神木土石流觀測站愛玉子溪之河床。由於現地組成粒子較為複雜,因此所測得地聲頻域較廣,由試驗結果可知光纖光柵感測器有效量測地聲訊號,並比對三種構型感測器與地聲檢知器結果,顯示三明治型光纖光柵感測器感測性能最好。最後,實驗結果顯示光纖光柵感測器與地聲檢知器的量測結果具有高度的一致性,足見光纖光柵感測器可應用在土石流地聲監測上。
The purpose of this study is to develop fiber bragg grating sensors based on the Sagnac and Mach-Zehnder hybrid interferometer for detecting ground vibrations generated by debris flows. The development of advanced FBG sensors, including Sandwich FBG sensor, flexural beam FBG sensor, and cantilever beam FBG sensor, refer to the previous construction made for acceleration measurement in literature. The FBG sensors and the fiber optical system were examined with geophone in the laboratory to measure the ground vibration produced by rocks hitting ground. Comparison of measured signals verified the capability of the advanced sensors, and the consistency between FBG sensors and geophone in time and frequency domain. Field experiments were conducted near the main channel of river, where debris flows monitoring system would be deployed. The FBG sensors and the geophone were buried in the ground near Ai-Yu-Zi Creek to measure the ground vibration produced by the rocks striking. The analysis of data acquired by the FBG sensors and a geophone indicated that the frequency range of impact signal measured in field was wider than in the laboratory. Furthermore, measured result from the Sandwich FBG sensor was better than the other sensors. The result of measurement could be as reference for development of monitoring system and applied on detection of debris flow in the future.
1.Arattano, M., ‘‘Monitoring the presence of the debris-flow front and its velocity through ground vibration detectors,’’ The Third Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, Switzerland, pp. 719-730, 2003.
2.Akira Mita and Isamu Yokoi, "FIBER BRAGG GRATING ACCELEROMETER FOR STRUCTURAL HEALTH MONITORING," Fifth International Conference on Motion and Vibration Control, pp. 631-636, 2000
3.Berkoff, T. A. and A. D. Kersey, "Experimental demonstration of a fiber Bragg grating accelerometer," Ieee Photonics Technology Letters, Vol. 8, No. 12, pp. 1677-1679, 1996.
4.Chang, J., Q. P. Wang, X. Y. Zhang, L. Z. Ma, H. Wang, S. Zhang, Q. Wang, J. S. Ni and Y. B. Wu, "Fiber-optic vibration sensor system," Laser Physics, Vol. 18, No. 7, pp. 911-913, 2008.
5.Francis T. S. Yu, Shizhuo Yin, ‘‘Fiber Optic Sensors,’’ CRC Press, 2002.
6.Friedlander, B. and B. Porat, “Detection of transient signals by the Gabor representation,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 2, pp. 169-180, 1989.
7.Friedlander, B. and A. Zeira, “Over-sampled Gabor representation for transient signals,” IEEE Trans. Signal Processing, Vol. 43, No. 9, pp. 2088-2094, 1995.
8.Gabor, D., “Theory of communication,” J. Inst. Electr. Eng., Vol. 93, pp. 429-459, 1946.
9.Guo, T., L. Y. Shao, H. Y. Tam, P. A. Krug and J. Albert, "Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling," Optics Express, Vol. 17, No. 23, pp. 20651-20660, 2009.
10.Huang, C. J., Shieh, C. L., and Yin, H. Y., “Laboratory study of the underground sound generated by debris flows,” J. Geophys. Res., 109, F01008, doi:10.1029/2003JF000048, pp. 1-11, 2004.
11.Huang, C. J., Yin, H. Y., Chen, C. Y., Yeh, C. H., Wang, C. L., “Ground vibrations produced by rock motions and debris flows,” J. Geophys. Res., Vol. 112, F02014, doi:10.1029/2005JF000437, pp. 1-20, 2007.
12.Hürlimann, M., D. Rickenmann, and C. Graf, ‘‘Field and monitoring data of debris-flow events in the Swiss Alps,’’ Can. Geotech. J., Vol. 40, pp. 161-175, 2003.
13.Hill, K. O., Y. Fujii, B. S. Kawasaki and D. C. Johnson, "LIGHT-INDUCED REFRACTIVE-INDEX CHANGES IN GE-DOPED SILICA FIBER," Journal of the Optical Society of America, Vol. 68, No. 11, pp. 1627-1627, 1978.
14.Hill, K. O., B. Malo, F. Bilodeau, D. C. Johnson and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask”, Applied Physics Letters, Vol. 62, pp.1035-1037, 1993.
15.Itakura, Y., N. Kamei, J. I. Takahama., and Y. Nowa, ‘‘Real time estimation of discharge of debris flow by an acoustic sensor,’’ 14th IMEKO World Congress, New Measurements – Challenges and Visions, Tampere, Finland, Vol. XA, pp. 127-131, 1997 a.
16.Itakura, Y., Y. Koga, J. I. Takahama, and Y. Nowa, ‘‘Acoustic detection sensor for debris flow,’’ The First Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, San Francisco, U.S.A., pp. 747-756, 1997 b.
17.Itakura, Y., N. Fujii and T. Sawada, ‘‘Basic characteristics of ground vibration sensors for the detection of debris flow,’’ Phys. Chem. Earth (B), Vol. 25, No. 9, pp. 717-720, 2000 a.
18.Itakura, Y., T., kitajima, K. Endo, and T. Sawada, ‘‘A new double-axes accelerometer debris-flow detection system,’’ The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, Rotterdam, pp. 319-324, 2000 b.
19.Johnson, A. M. and J. R. Rodine, “Debris flow,” Slope Instability, pp.257-361, 1984.
20.Kersey, A. D., T. A. Berkoff and W. W. Morey, "MULTIPLEXED FIBER BRAGG GRATING STRAIN-SENSOR SYSTEM WITH A FIBER FABRY-PEROT WAVELENGTH FILTER," Optics Letters, Vol. 18, No. 16, pp. 1370-1372, 1993.
21.Kersey, A. D. ‘‘A Review of Recent Developments in Fiber Optic Sensor Technology’’ Optical Fiber Technology 2, pp.291-317, 1996.
22.Laudati, A., F. Mennella, M. Giordano, G. D'Altrui, C. C. Tassini and A. Cusano, "A fiber-optic Bragg grating seismic sensor," Ieee Photonics Technology Letters, Vol. 19, No. 21-24, pp. 1991-1993, 2007.
23.Lee, B., “Review of the present status of optical fiber sensors,” Optical Fiber Technology, Vol. 9, pp. 57-79, 2003.
24.Li, G. L., G. Chen and J. Y. Zhong, "Analysis of geophone properties effects for land seismic data," Applied Geophysics, Vol. 6, No. 1, pp. 93-101, 2009.
25.Meltz, G., W. W. Morey and W. H. Glenn, "FORMATION OF BRAGG GRATINGS IN OPTICAL FIBERS BY A TRANSVERSE HOLOGRAPHIC METHOD," Optics Letters, Vol. 14, No. 15, pp. 823-825, 1989.
26.Morey, W. W., Meltz, G., Glenn, W. H., "Fibre optic Bragg grating sensors, "Proceedings of SPIE 1169, pp. 98-107, 1989.
27.Okuda, S., K. Okunishi, and H. Suwa, ‘‘Observation of debris flow at Kamikamihori Valley of Mt. Yakedade,’’ Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130, 1980.
28.Ren, L., J. Y. Chen, H. N. Li, G. B. Song and X. H. Ji, "Design and application of a fiber Bragg grating strain sensor with enhanced sensitivity in the small-scale dam model," Smart Materials & Structures, Vol. 18, No. 3, pp. 7, 2009.
29.Shearer, P. M., “Introduction to seismology,” Cambridge University Press, 1999.
30.Suwa, H., Yamakoshi, T., and K. Sato, K., ‘‘Relationship between Debris-Flow discharge and ground vibration’’ The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, Rotterdam, pp. 311-318, 2000.
31.Todd, M. D., G. A. Johnson, B. A. Althouse and S. T. Vohra, "Flexural beam-based fiber Bragg grating accelerometers," Ieee Photonics Technology Letters, Vol. 10, No. 11, pp. 1605-1607, 1998.
32.T. S. Jang, S. S. Lee, Y. G. Kim, ‘‘Surface-bonded fiber optic Sagnac sensors for ultrasound detection’’ Ultrasonics 42, pp. 837-841, 2004
33.Xie, F., J. Y. Ren, Z. M. Chen and Q. B. Feng, "Vibration-displacement measurements with a highly stabilised optical fiber Michelson interferometer system," Optics and Laser Technology, Vol. 42, No. 1, pp. 208-213, 2010.
34.山下真司 著,白中和 譯,「圖解光纖通信原理與最新應用技術」,建興文化事業有限公司,2004。
35.尹孝元、黃清哲、連惠邦、李秉乾、周天穎、王晉倫,「自動化土石流觀測系統之發展及應用」,中華水土保持學報,第37卷,第2期,第91-109頁,2006。
36.尹孝元、連榮吉、黃清哲、李秉乾,「台灣地區土石流現場觀測技術發展現況」,地工技術,第110期(土石流防治專輯),第65-76頁,2006。
37.尹孝元,「土石流造成地表振動之觀測與研究」,國立成功大學水利及海洋研究所博士論文(英文),2005。
38.台灣水土保持局及中華水土保持學會,「水土保持手冊」,1992。
39.吳積善、康志成、田連權,「雲南蔣家溝泥石流觀測研究」,北京,科學出版社,1990。
40.吳佳霖,「新型布拉格光纖光柵振動感測器之研製」,國立高雄第一科技大學光電工程研究所碩士論文,2009。
41.李昇達,「光纖干涉式振動感測器之研究」,國立高雄第一科技大學光電工程研究所碩士論文,2008。
42.高橋保,「橫跨土石流潛勢區域之橋樑工程問題」,土木工程防災系列研習會論文集,中央大學土木系橋樑工程研究中心,1997。
43.陳精日、章書成、葉明富,「泥石流地聲特性及NJ-2型無線遙測泥石流警報器的研製」,第二屆全國泥石流學術會議論文集(中國),第36-41頁,1991。
44.黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼,「土石流地聲特性之實驗研究」,中國土木水利工程學刊,第16卷,第1期,第53-63頁,2004。
45.黃清哲、葉智惠、尹孝元、王晉倫,「地聲探測器應用於土石流監測之研究」,中華水土保持學報,第36卷,第1期,第39-53頁,2005。
46.黃清哲、張順添、尹孝元、葉智惠、王晉倫「2004年七月二日神木村土石流地聲特性之分析」,中華水土保持學報,第38卷,第1期,第1-16頁,2007。
47.劉格非、李欣輯,「地聲探測器之初步研究」,第二屆土石流研討會論文,第84-93頁,1999。
48.劉格非、李欣輯,「地聲探測器之應用」,第二屆海峽兩岸山地災害與環境保育學術研討會,第161-169頁,2000。
49.(蘇) B. C. 斯捷潘諾夫著,孟河清譯「泥石流與泥石流體的基本特性及其量測方法」,科學技術文獻出版社重慶分社,1986。
50.饒逢書,「適用於土石流地聲監測之光纖干涉儀之研發」,國立成功大學水利及海洋研究所碩士論文,2009。