簡易檢索 / 詳目顯示

研究生: 狄學賢
TI, HSUEH-HSIEN,
論文名稱: 結合水體生光性質與半解析光學理論模式模擬日月潭透明度
Simulation of water clarity in Sun Moon Lake using water bio-optical characteristics and a semi-analytical Secchi depth modeling scheme
指導教授: 張智華
CHANG, CHIH-HUA,
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 101
中文關鍵詞: 光學水質沙奇盤透明度生光模式水色輻射傳輸光學性質
外文關鍵詞: optical water quality, Secchi disk transparency, bio-optical model, water color, radiative transfer, optical properties
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水體透明度(depth of Secchi disk, SD)是人類最早有觀測記錄的水質參數、也是湖庫澄清度與優養評估的重要指標之一,觀測迄今兩百年以上尚未被其他先進儀器所取代。一般湖庫水質模式或優養評估均透過經驗關係從水質估算透明度,例如使用相當普遍的卡爾森優養指標中的葉綠素a (Chl-a) vs SD經驗式,雖然學界早有質疑此經驗關係的適用性,但仍鮮少研究以光學物理模式探討內陸湖庫水質與SD間的關連性。古典光學理論假設水下的沙奇盤為一個點目標,進而以特定波長光束衰減係數(beam attenuation coefficient, c(λ))為核心推導水質與SD的關係。近年來海洋水色學界提出新的光學物理理論,假設沙奇盤不屬於點目標,其在水下隨深度漸深到由人眼視界消失的過程中,主要與人眼感知特徵波長之光衰係數(diffuse attenuation coefficient for downward irradiance, Kd(λ))及水下遙測反射率(remote sensing reflectance, rrs(λ))有關。
    本研究以台灣澄清度最高且最具景觀遊憩價值之天然湖泊–日月潭為研究目標,分析其光敏性物質濃度、固有光學性質(inherent optical properties, IOPs)、外顯光學性質(apparent optical properties, AOPs),以建立比濃度IOP關係及四成分生光模式(bio-optical models, BOM)。其次,搭配半解析輻射傳輸模式及新的透明度物理模式,發展水質–透明度物理模式,並針對日月潭內陸湖庫光學特性,修正其中Kd(λ)及rrs(λ)之特徵波長設定。最後,以建立之透明度模式從歷年觀測水質重建日月潭透明度,分析其透明度模擬效果,並與卡爾森經驗關係及古典光學理論模擬結果進行比較。
    本研究三次採樣之懸浮固體物濃度(SS)、總溶解性有機碳濃度(DOC)、Chl-a濃度及濁度(Turb)分別為0.7-2.9 mg/L、0.45-1.12 mg/L、0.296-2.962 μg/L及1.55-7.21 NTU;測得之全白及半黑半白沙奇盤深度分別為2.0-3.8 m及1.8-3.17 m。綜合前期分析數據,更新後之比濃度IOP關係採用SS估計顆粒背向散射係數〖bb〗_p (550) (R2=0.77)、以Chl-a估計浮游植物顆粒吸收係數a_ph (440) (R2=0.79)、以DOC估計有色溶解性有機物質吸收係數a_g (440) (R2=0.88),並以Turb估計無機顆粒吸收係數a_dm (400) (R2=0.91)。BOMs部分,本研究調整參數修正前期研究BOMs在總吸收係數a(λ)及總背向散射係數bb(λ)於400-550 nm模擬值高估的偏差,使其更符合觀測值。根據日月潭歷年透明度觀測與模擬比較結果顯示,Kd(λ)之特徵波長(wavelength for Kd transparent window)率定在527-532 nm之間;rrs(λ) 之特徵波長(perceive color of rrs)率定在500-537 nm間可得到最佳透明度模擬結果。
    本研究修正後之透明度物理模式,以實測日月潭水質模擬SD,R2可達0.84,誤差為0.27 m,其模擬效果較卡爾森經驗關係及前期研究採用之古典光學理論為佳。此外,本研究也以在日月潭率定之物理模式套用在本島其他20座主要水庫,其平均透明度模擬相對誤差為35%,其中除白河、石門與寶二水庫誤差超過40%以外,其他水庫的模擬結果都遠比卡爾森經驗關係為佳。
    本研究發展的透明度物理模式演繹過程均為代數及顯式解,可輕易將其編碼套用在現有水庫水質模式上,加強管理單位對景觀遊憩型湖庫之水質管理與污染防治。

    SUMMARY
    Depth of Secchi disk(SD) is the most earlier water quality parameter of record by human observation. Now, SD is still the important parameter to analyze clarity and eutrophication of reservoirs. In this study, we will connect water quality and SD by the physical model of clarity, BOM and semi-analytical model. The physical clarity model is related to a new theory of underwater visibility, which says that Secchi disk should not be seen as a point target in water, and water color will effect the observation of human eyes. Compared with the classic visible theory, the classic theory assumes that Secchi disk is a point target in water, and is related to beam attenuation coefficient(c). The physical model is related to the characteristic wavelength of diffuse attenuation coefficient for downward irradiance(Kd) and remote sensing reflectance,(rrs). According to references and analytical data of other research, we update the regression relationship of IOPs and water quality. The relationship is Turd and adm(400)(R2=0.88), DOC and ag(440)(R2=0.91),Chla and aph(440)(R2=0.79), TSS and bbp(550)( R2=0.77). We use QAA algorithm to simulate remote-sensing reflectance. QAA algorithm has three types of parameter numbers to simulate rrs(λ), the result we test shows that Case1 has better results than others. The result compares with Obs_ rrs(pc), R2=0.563. We use two semi-analytical model to simulate K_d (λ), and theres is no difference of results. We choose the semi-analytical model calculated by solar zenith angle because the model is easier to code. The result compares with Obs_ K_d(tr), R2=0.976. According to the analyzing results and Obs_data, if we would like to get the best result of simulating clarity, tr wavelength is at 500-537nm, pc wavelength is at 527-532nm in Sun Moon Lake reservoir. According to the result of SD, the result from the physical model of clarity is better than classic clarity model. The best result of classic clarity model shows R2=0.79, RMSE=6.98m, and the best result of physical clarity model shows R2=0.84, RMSE=0.27m. Finaaly, we use the physical model to simulate SD from water quality of years(2005-2013) in Taiwan reservoirs. The result from physical clarity model of Sun Moon Lake shows R2=0.5, RMSE=0.84m. On the other hand, we simulate clarity of other twenty reservoirs. The average RPD=0.35, RMSE=0.63m. The results are better than the results from Calson experimental algorithm.

    目錄 摘要 I 致謝 VII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 前言 1 1.1研究背景 1 1.2研究動機 4 1.3研究目的 6 1.4論文架構 7 第二章 文獻回顧 8 2.1透明度的量測歷史以及科學應用 8 2.1.1沙奇盤深度理論的歷史演進 8 2.1.2沙奇盤深度公式的演進 9 2.1.3透明度的科學應用 11 2.2透明度物理定義與光學模式 12 2.2.1古典透明度物理模式 12 2.2.2以淺水域水底輻射傳遞及實際人眼識別系統為基礎之透明度物理模式 14 2.2.3新透明度理論的實際運用 18 2.3水體光學特性 21 2.3.1外顯光學特性(AOP) 21 2.3.2固有光學特性(IOP) 23 2.3.3水體之固有光學特性和漫射光衰減係數間的關係 27 2.4水質與IOP光學特性 30 第三章 研究材料與方法 33 3.1研究區域 33 3.2水質分析 38 3.2.1 葉綠素-a 38 3.2.2 懸浮固體物 39 3.2.3 溶解性有機碳 39 3.2.4 濁度 39 3.3外顯光學性質(AOP)分析 40 3.3.1. 輻射反射率(Rrs) 40 3.3.2. 輻照反射率(R) 41 3.3.3. 向下平均擴散光衰係數(Kd) 44 3.3.4. 光強度Ed (PAR) 45 3.3.5透明度(ZSD、ZEU) 45 3.4固有光學性質(IOP)分析 47 3.4.1 FTF-TR法 47 3.4.2 光衰係數(c,Beam attenuation) 52 3.4.3 有色溶解性有機物質(CDOM)之吸收 53 3.4.4 數據修正及正規化處理 54 3.5透明度模式架構 55 3.5.1 AOP、IOP資料整理 57 3.5.2半解析模式、輻射反射率演算法 58 3.5.3透明度模式 59 第四章 結果與討論 61 4.1實驗及採樣結果 61 4.1.1 OAS濃度分析結果 61 4.1.2修正IOP比濃度關係 63 4.1.2 AOP分析結果 67 4.2生光模式修正 71 4.3建立IOP與AOP的關係 75 4.3.1以QAA演算法模擬rrs 75 4.3.2透過半解析模式模擬Kd 76 4.4模擬研究期間日月潭透明度 78 4.5透明度模式之應用:歷年透明度模擬 81 5.1 結論 88 5.2 建議 90 附錄 99

    Aas, E. (2000). Spectral slope of yellow substance: problems caused by small particles. Proc. Ocean Optics XV, Monaco, 16, 20.
    Aas, E., Hokedal, J., & Sorensen, K. (2014). Secchi depth in the Oslofjord-Skagerrak area: theory, experiments and relationships to other quantities. Ocean Science, 10(2), 177-199.
    Alikas, K., Kratzer, S., Reinart, A., Kauer, T., & Paavel, B. (2015). Robust remote sensing algorithms to derive the diffuse attenuation coefficient for lakes and coastal waters. Limnology and Oceanography-Methods, 13(8), 402-415. doi: 10.1002/lom3.10033
    Blackwell, H. R. (1946). Contrast thresholds of the human eye. JOSA, 36(11), 624-643.
    Boss, E., Slade, W. H., Behrenfeld, M., & Dall'Olmo, G. (2009). Acceptance angle effects on the beam attenuation in the ocean. Optics Express, 17(3), 1535-1550. doi: 10.1364/OE.17.001535
    Boyce, D. G., Lewis, M., & Worm, B. (2012). Integrating global chlorophyll data from 1890 to 2010. Limnology and Oceanography-Methods, 10, 840-852.
    Boyce, D. G., Lewis, M. R., & Worm, B. (2010). Global phytoplankton decline over the past century. Nature, 466(7306), 591-596.
    Bukata, R. P., Jerome, J. H., Bruton, J. E., Jain, S. C., & Zwick, H. H. (1981). Optical Water-Quality Model of Lake-Ontario .1. Determination of the Optical-Cross-Sections of Organic and Inorganic Particulates in Lake-Ontario. Applied Optics, 20(9), 1696-1703. doi: Doi 10.1364/Ao.20.001696
    Bukata, R. P., Jerome, J. H., Kondratyev, K. Y., & Pozdnyakov, D. V. (1995). Optical properties and Remote Sensing of Inland and Coastal Waters. Boca Raton: CRC Press.
    Butler, W. L. (1962). Absorption of Light by Turbid Materials. Journal of the Optical Society of America, 52(3), 292-299. doi: 10.1364/JOSA.52.000292
    Calson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361-369.
    Cao, F., Fichot, C. G., Hooker, S. B., & Miller, W. L. (2014). Improved algorithms for accurate retrieval of UV/visible diffuse attenuation coefficients in optically complex, inshore waters. Remote Sensing of Environment, 144, 11-27. doi: 10.1016/j.rse.2014.01.003
    Carlson, R. E. (1977). A trophic state index for lakes. Limnology and oceanography, 22(2), 361-369.
    Chang, C.-H., Liu, C.-C., Chung, H.-W., Lee, L.-J., & Yang, W.-C. (2014). Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions. Applied Optics, 53(4), 605-617. doi: 10.1364/AO.53.000605
    Chang, C. H., Liu, C. C., & Wen, C. G. (2007). Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color. Optics Express, 15(2), 252-265.
    Chen, J., Cui, T., Tang, J., & Song, Q. (2014). Remote sensing of diffuse attenuation coefficient using MODIS imagery of turbid coastal waters: A case study in Bohai Sea. Remote Sensing of Environment, 140, 78-93. doi: 10.1016/j.rse.2013.08.031
    Cialdi, A. (1866). Sul moto ondoso del mare e su le correnti di esso specialmente su quelle littorali: Tipographia delle belle arti.
    Cunningham, A., Ramage, L., & McKee, D. (2013). Relationships between inherent optical properties and the depth of penetration of solar radiation in optically complex coastal waters. Journal of Geophysical Research-Oceans, 118(5), 2310-2317. doi: 10.1002/jgrc.20182
    Darecki, M., & Stramski, D. (2004). An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 89(3), 326-350.
    Davies-colley, R. J., & Vant, W. N. (1988). Estimation of optical-properties of water from Secchi disk depths. Water Resources Bulletin, 24(6), 1329-1335.
    Davies-Colley, R. J., Vant, W. N., & Smith, D. G. (2003). Colour and clarity of natural waters. New York: Ellis Horwood.
    Dekker, A. G., Phinn, S. R., Anstee, J., Bissett, P., Brando, V. E., Casey, B., . . . Roelfsema, C. (2011). Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnology and Oceanography-Methods, 9, 396-425. doi: 10.4319/lom.2011.9.396
    Duntley, S., & Preisendorfer, R. (1952). The visibility of submerged objects. Final Report to Office of Naval Research.
    Duntley, S. Q. (1952). The visibility of submerged objects. In M. I. T. Visibility Lab. (Ed.), (pp. 74). San Diego: Scripps Institution of Oceanography.
    Fuller, L. M., Aichele, S. S., & Minnerick, R. J. (2004). Predicting Water Quality by Relating Secchi-Disk Transparency and Chlorophyll a Measurements to Satellite Imagery for Michigan Inland Lakes, August 2002 (pp. 25): U.S. Geological Survey Scientific Investigations Report 2004-5086.
    Gallegos, C. L., Werdell, P. J., & McClain, C. R. (2011). Long-term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. Journal of Geophysical Research-Oceans, 116. doi: 10.1029/2011jc007160
    Gordon, H. R. (1989). Can the Lambert-Beer Law Be Applied to the Diffuse Attenuation Coefficient of Ocean Water. Limnology and Oceanography, 34(8), 1389-1409.
    Højerslev, N. (1977). Spectral daylight irradiance and light transmittance in natural waters measured by means of a Secchi disc only. ICES, C, 42(7).
    Højerslv, N. K. (1978). Daylight measurements appropriate for photosynthetic studies in natural sea waters. Journal du Conseil, 38(2), 131-146.
    Håkanson, L., & Peters, R. H. (1995). Predictive limnology. Amsterdam: SPB Academic Publishing bv.
    Hakvoort, H., de Haan, J., Jordans, R., Vos, R., Peters, S., & Rijkeboer, M. (2002). Towards airborne remote sensing of water quality in The Netherlands - validation and error analysis. Isprs Journal of Photogrammetry and Remote Sensing, 57(3), 171-183.
    Haltrin, V. I. (1998). Spectral relative clarity of Black and Aegean Seas. Paper presented at the Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS'98. 1998 IEEE International.
    Holmes, R. W. (1970). The Secchi disk in turbid coastal waters. Limnol. Oceanogr, 15(5), 688-694.
    Hou, W. L., Lee, Z. P., & Weidemann, A. D. (2007). Why does the Secchi disk disappear? An imaging perspective. Optics Express, 15(6), 2791-2802.
    Idso, S. B., & Gilbert, R. G. (1974). Universality of Poole and Atkins Secchi disk-light extinction equation. Journal of Applied Ecology, 11(1), 399-401. doi: 10.2307/2402029
    Jerlov, N. G. (1976). Marine Optics (Elsevier Oceanography Series).
    Kallio, K. (1999). Absorption properties of dissolved organic matter in Finnish lakes. Proc. Estonian Acad. Sci. Biol. Ecol, 48, 75-83.
    Kirk, J. T. O. (1983a). Light and photosynthesis in aquatic ecosystems.–With 108 figs, 401 pp. Cambridge–London–New York: Cambridge University Press
    Kirk, J. T. O. (1983b). Light and Photosynthesis in Aquatic Ecosystems. Cambridge Univ. Press, Cambridge
    and New York. 401 p.
    Kirk, J. T. O. (1984). Dependence of Relationship between Inherent and Apparent Optical-Properties of Water on Solar Altitude. Limnology and Oceanography, 29(2), 350-356.
    Kirk, J. T. O. (1991). Volume Scattering Function, Average Cosines, and the Underwater Light-Field. Limnology and Oceanography, 36(3), 455-467.
    Kirk, J. T. O. (1994). Light and Photosynthesis in Aquat. Ecosystems: Cambridge.
    Krümmel, O. (1889). Bemerkungen über die Durchsichtigkeit des Meerwassers. Ann. d. Hydr. mar. Met, 2, 62-78.
    Krümmel, O. (2013). Der Ozean: eine Einführung in die allgemeine Meereskunde: BoD–Books on Demand.
    Lee, Z., Carder, K. L., & Arnone, R. A. (2002). Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27), 5755-5772.
    Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1998). Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied Optics, 37(27), 6329-6338.
    Lee, Z., Hu, C., Shang, S., Du, K., Lewis, M., Arnone, R., & Brewin, R. (2013). Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing. Journal of Geophysical Research-Oceans, 118(9), 4241-4255. doi: 10.1002/jgrc.20308
    Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., . . . Lin, G. (2015). Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169, 139-149. doi: http://dx.doi.org/10.1016/j.rse.2015.08.002
    Lee, Z., Shang, S., Qi, L., Yan, J., & Lin, G. (2016). A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sensing of Environment, 177, 101-106.
    Lee, Z., Weidemann, A., Kindle, J., Arnone, R., Carder, K. L., & Davis, C. (2007). Euphotic zone depth: Its derivation and implication to ocean‐color remote sensing. Journal of Geophysical Research: Oceans, 112(C3).
    Lee, Z. P., Carder, K. L., & Arnone, R. A. (2002). Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27), 5755-5772.
    Lee, Z. P., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1998). Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied Optics, 37(27), 6329-6338.
    Lee, Z. P., Du, K. P., & Arnone, R. (2005). A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research: Oceans, 110(C2).
    Lee, Z. P., Du, K. P., & Arnone, R. (2005). A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research-Oceans, 110(C2). doi: 10.1029/2004jc002275
    Lee, Z. P., Shang, S. L., Hu, C. M., Du, K. P., Weidemann, A., Hou, W. L., . . . Lin, G. (2015). Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169, 139-149.
    Levin, I. (1980). On the Theory of White Disk. IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 16(9), 926-932.
    Levin, I. M., & Radomyslskaya, T. M. (2012). Estimate of water inherent optical properties from Secchi depth. Izvestiya Atmospheric and Oceanic Physics, 48(2), 214-221. doi: 10.1134/s0001433812020065
    Lewis, M. R., Carr, M. E., Feldman, G. C., Esaias, W., & Mcclain, C. (1990). Influence of Penetrating Solar-Radiation on the Heat-Budget of the Equatorial Pacific-Ocean. Nature, 347(6293), 543-545.
    Lisitzin, E. (1938). Über die Durchsichtigkeit des Wassers im nördlichen Teil des Baltischen Meeres: Druck von A.-g. F. Tilgmann.
    Maul, G. A. (1985). Introduction to Satellite Oceanography.
    Meywerk, J., & Ramanathan, V. (1999). Observations of the spectral clear-sky aerosol forcing over the tropical Indian Ocean. Journal of geophysical research, 104(D20), 24359-24370.
    Mitchell, B. G., Kahru, M., Wieland, J., & Stramska, M. (2002). Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. Ocean optics protocols for satellite ocean color sensor validation, Revision, 3, 231-257.
    Mobley, C. (2015, 2015/06/25). Overview of Optical Oceanography. from http://www.oceanopticsbook.info/view/overview_of_optical_oceanography/reflectances
    Mobley, C. D. (1994). Light and water: radiative transfer in natural waters: Academic press.
    Mobley, C. D., Sundman, L. K., Davis, C. O., Bowles, J. H., Downes, T. V., Leathers, R. A., . . . Reid, R. P. (2005). Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Applied Optics, 44(17), 3576-3592.
    Morel, A. (1974). Optical properties of pure water and pure sea water. Optical aspects of oceanography, 1, 1-24.
    Morel, A. (Ed.). (1974). Optical properties of pure water and pure sea water. New York: Academic.
    Morel, A., & Loisel, H. (1998). Apparent optical properties of oceanic water: dependence on the molecular scattering contribution. Applied Optics, 37(21), 4765-4776.
    Mueller, J. L. (2003). Overview of Biogeochemical Measurements and Data
    Analysis in Ocean Color Research. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5,Volume 5.
    Mueller, J. L., Davis, C., Arnone, R., Frouin, R., Carder, K., Lee, Z., . . . McLean, S. (2000). Above-water radiance and remote sensing reflectance measurements and analysis protocols. Ocean Optics protocols for satellite ocean color sensor validation Revision, 2, 98-107.
    NALMS. (2015, 2016/01/01). The Secchi Dip-In is a Program. Retrieved 2016/01/01, from http://www.secchidipin.org/
    O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., . . . McClain, C. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research: Oceans, 103(C11), 24937-24953.
    Pope, R., & Fry, E. (1997). Absorption spectrum (380 - 700 nm) of pure waters: II. Integrating cavity measurements. Applied Optics, 36, 8710-8723.
    Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 36(33), 8710-8723.
    Preisendorfer, R. W. (1960). Application of Radiative Transfer Theory to Light Measurements in the Sea: Institut géographique national.
    Preisendorfer, R. W. (1986). Secchi disk science - Visual optics of natural waters. Limnology and Oceanography, 31(5), 909-926. doi: 10.4319/lo.1986.31.5.0909
    Preisendorfer, R. W. (1986). Secchi disk science: Visual optics of natural waters. Limnology and oceanography, 31(5), 909-926.
    Sahoo, G. B., Nover, D., Schladow, S. G., Reuter, J. E., & Jassby, D. (2013). Development of updated algorithms to define particle dynamics in Lake Tahoe (CA-NV) USA for total maximum daily load. Water Resources Research, 49(11), 7627-7643. doi: 10.1002/2013wr014140
    Sahoo, G. B., Schladow, S. G., & Reuter, J. E. (2010). Effect of sediment and nutrient loading on Lake Tahoe optical conditions and restoration opportunities using a newly developed lake clarity model. Water Resources Research, 46. doi: 10.1029/2009wr008447
    Sauberer, F., Ruttner, F., Jensen, C., & Schwassmann, A. (1941). Die Strahlungsverhältnisse der Binnengewässer: Akad. Verlagsgesellschaft.
    Shifrin, K. (1988). Physical optics of ocean water: Springer Science & Business Media.
    Sipelgas, L., Arst, H., Kallio, K., Erm, A., Oja, P., & Soomere, T. (2003). Optical Properties of Dissolved Organic Matter in Finnish and Estonian Lakes (Vol. 34): IWA Publishing.
    Sipelgas, L., Arst, H., Kallio, K., Erm, A., Oja, P., & Soomere, T. (2003). Optical properties of dissolved organic matter in Finnish and Estonian lakes. Hydrology Research, 34(4), 361-386.
    Sokoletsky, L. G., Budak, V. P., Shen, F., & Kokhanovsky, A. A. (2014). Comparative analysis of radiative transfer approaches for calculation of plane transmittance and diffuse attenuation coefficient of plane-parallel light scattering layers. Applied Optics, 53(3), 459-468. doi: 10.1364/ao.53.000459
    Son, S., & Wang, M. (2015). Diffuse attenuation coefficient of the photosynthetically available radiation K-d(PAR) for global open ocean and coastal waters. Remote Sensing of Environment, 159, 250-258. doi: 10.1016/j.rse.2014.12.011
    Stavn, R. H., & Weidemann, A. D. (1989). Shape Factors, 2-Flow Models, and the Problem of Irradiance Inversion in Estimating Optical-Parameters. Limnology and Oceanography, 34(8), 1426-1441.
    Sullivan, A. B., Rounds, S. A., Uhrich, M. A., & Bragg, H. M. (2006). Modeling suspended sediment and water temperature in Detroit lake, Oregon. Paper presented at the Eighth Federal Interagency Sedimentation Conference, Reno, Nevada, US.
    Swift, T. J., Perez-Losada, J., Schladow, S. G., Reuter, J. E., Jassby, A. D., & Goldman, C. R. (2006). Water clarity modeling in Lake Tahoe: Linking suspended matter characteristics to Secchi depth. Aquatic Sciences, 68(1), 1-15. doi: 10.1007/s00027-005-0798-x
    Tassan, S., & Allali, K. (2002). Proposal for the simultaneous measurement of light absorption and backscattering by aquatic particulates. Journal of Plankton Research, 24(5), 471-479.
    Toole, D. A., Siegel, D. A., Menzies, D. W., Neumann, M. J., & Smith, R. C. (2000). Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability. Applied Optics, 39(3), 456-469.
    Tyler, J. E. (1968). The secchi disc. Limnology and oceanography, 13(1).
    Tyler, J. E. (1973). Applied radiometry. Oceanography and marine biology annual review 11:25.
    Werdell, P. J. (2005). An evaluation of Inherent Optical Property data for inclusion in the NASA bio-Optical Marine Algorithm Data set. NASA Ocean Biology Processing Group, Science Systems and Applications, Inc. Document Version, 1.
    Wernand, M. R. (2010). On the history of the Secchi disc. Journal of the European Optical Society-Rapid Publications, 5.
    張智華, & 黃韋旻. (2015). 探討水質對日月潭水色與澄清度之影響. 工業污染防治, 134, 19-38.
    黃韋旻. (2015). 以比濃度固有光學性質建立水庫水色及透明度模式之研究.
    黃韋旻, 吳祐欣, & 張智華. (2015). 以生光性質與輻射傳輸評估高沉積物負荷水庫優養化與透明度之關連性:以南化水庫為例. Paper presented at the 2015環境資訊與規劃管理研討會, 中壢,台灣.
    黃慶祥. (2006a). 水庫水質與光學性質模式之建立及其應用.
    黃慶祥. (2006b). 水庫水質與光學性質模式之建立及其應用. (碩士), 成功大學, 台南市.
    楊大慶. (2013). 三種淡水藻固有光學性質分析及水色模擬之研究. (碩士), 成功大學, 台南市.
    劉正千, 張智華, 許華宇, 譚子健, & 溫清光. (2007). 應用ISIS高頻譜光學遙測影像於曾文水庫之水質監測 科儀新知 (pp. 161:129-142).

    無法下載圖示 校內:2021-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE