簡易檢索 / 詳目顯示

研究生: 溫嘉薇
Wen, Chia-Wei
論文名稱: 以條件總經變數模型衡量管理期貨基金經理人績效
Measuring CTAs Performance by Conditioning Managerial Skill on Macroeconomic Information
指導教授: 顏盟峯
Yen, Meng-Feng
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 68
中文關鍵詞: 管理期貨基金經理人能力貝氏條件模型總經指標
外文關鍵詞: Commodity trading advisors (CTA), Managerial skill, Bayesian model, Macroeconomic variables
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用貝氏模型將總經因子代入條件變數中衡量管理期貨基金績效。過往研究在探討管理期貨基金績效時,皆採用傳統評價方法,本研究選擇了貝氏條件模型,透過五大投資人特性分析經理人績效。
    本研究結合TASS及BarclayHedge資料庫,採1994年至2012年管理期貨基金為樣本。實證結果發現,五大投資人績效皆較巴克萊管理期貨基金指數佳,其中,相信基金經理人有創造超額報酬能力的投資者相較於不相信經理人有此能力的投資者擁有較高的顯著正超額報酬。此外,本研究亦發現全權決策管理期貨基金表現較系統化交易管理期貨基金佳,而相信基金經理人有創造超額報酬能力的投資者平均會投資較高比重於全權決策基金。本文推測此為造成其績效較佳的主要原因。最後,本文實證結果亦指出貝氏模型採用愈短期樣本內期間的預測表現會愈佳,與貝氏估計模型特性相符。

    In this thesis, we measure CTAs performance by conditioning managerial skill on macroeconomic variables. Most of previous studies, those considering CTAs performance, adopted traditional models. This thesis is the first study, which applies conditional model to CTAs, analyzing manager skills under five types of investors with different prior beliefs and restrictions.
    This study combines TASS and BarclayHedge databases, from which we collect CTAs data during the sample period from 1994 to 2012. Empirical results show that all five Bayesian investors investigated outperform the Barclay CTA Index. Investors who believe in active managerial skills tend to have significantly larger alpha than those who don't. In addition, our results suggest that Discretionary CTAs outperform Systematic CTAs. We find people who believe in management skills will choose to invest in more Discretionary CTAs than in Systematic CTAs under an equal-weight scheme; this would be the key reason for their remarkable significant abnormal return. Finally, our results point out that Bayesian models will perform better with a shorter prior period, a finding consistent with the characteristics of Bayesian models.

    摘 要 I Abstract II 誌 謝 III List of Tables VI List of Figures VII Chapter 1. INTRODUCTION 1 1.1 Research Background 1 1.2 Motivation and Contribution 3 1.3 Thesis Structure 4 Chapter 2. LITERATURE REVIEW 6 2.1 CTAs 6 2.2 Conditional Asset Pricing Model 6 2.3 Macroeconomic Variables 9 Chapter 3. DATA AND METHODOLOGY 11 3.1 CTA Data 11 3.2 Macroeconomic Variables 13 3.3 Risk Factors 14 3.4 Methodology 15 3.4.1 Return Generating Process 16 3.4.2 Adopting Restrictions and Informative Prior Beliefs 17 3.4.3 Posterior Distribution for Fund Return 20 3.4.4 Predictive Moments for Portfolio Selection 21 3.4.5 Portfolio Performance Evaluation 22 3.5 Investor Types in Manager Skill 23 Chapter 4. EMPIRICAL RESULTS 26 4.1 Out-of-Sample Portfolio Performance 26 4.2 Out-of-Sample Portfolio Performance with Extended In-sample Period 27 4.3 Results by Investment Strategy 29 4.4 Attributes of The Optimal Portfolios 30 4.5 Predictive Ability with Different Prior Periods 31 Chapter 5. CONCLUSION AND SUGGESTION 33 References 35 Appendix 58

    Agarwal, V., Fos, V., Jiang, W. (2010). Inferring reporting-related biases in hedge fund databases from hedge fund equity holdings. Management Science 59, 1271-289.
    Agarwal, V., Naik, N.Y., (2000). Multi-period performance persistence analysis of hedge funds. Journal of Financial and Quantitative Analysis 53, 327-342.
    Aggarwal, R.K., Jorion, P., (2010). The performance of emerging hedge funds and managers. Journal of Financial Economics 96, 238–256.
    Avramov, D., (2004). Stock return predictability and asset pricing models. The Review of Financial Studies 17, 699-738.
    Avramov, D., Chordia, T., (2005). Asset pricing models and financial market anomalies. Review of Financial Studies 19, 1001-1040.
    Avramov, D., Chordia, T., (2006). Predicting stock returns. Journal of Financial Economics 82, 387-415.
    Avramov, D., Kosowski, R., Naik, N.Y., Teo, M., (2011). Hedge funds, managerial skill, and macroeconomic variables. Journal of Financial Economics 99, 672-692.
    Avramov, D., Wermers, R., (2006). Investing in mutual funds when returns are predictable. Journal of Financial Economics 81, 339-377.
    Baks, K., Metrick, A., Wachter, J., (2001). Should investors avoid all actively managed mutual funds? A study in Bayesian performance evaluation. Journal of Finance 56, 45-85.
    Banegas, A., Gillen, B., Timmermann, A., Wermers, R., (2012). The cross-section of conditional mutual fund performance in european stock markets. Journal of Financial Economics 108, 699-726.
    Billingsley, R., and Chance, D. (1996). Benefits and limitations of diversification among commodity trading advisors. Journal of Portfolio Management 23, 65–80.
    Bollen, N. P. B., and Whaley, R. E. (2009). Hedge fund risk dynamics: Implications for performance appraisal. Journal of Finance 64, 985–1035.
    Caglayan, M. O. and Edwards, F. R. (2001). Hedge fund performance and manager skill. Journal of Futures Markets 21,1003–1028.
    Capocci, D., and Hubner, G. (2005). Analysis of hedge fund performance. Journal of Empirical Finance 11, 55–89.
    Fama, E., French, K., (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics 19, 3-29.
    Fama, E.F., and Schwert, G.W., (1981). Stock returns, real activity, inflation, and money. American Economic Review 71(4), 545-565.
    Ferson, W.E., Harvey, C.R., (1993). The risk and predictability of international equity returns. Review of Financial Studies 6, 527-566.
    Ferson, W.E., Harvey, C.R., (1999). Conditioning variables and the cross-section of stock returns. Journal of Finance 54, 1325-1360.
    Ferson, W.E., Schadt, R.W., (1996). Measuring fund strategy and performance in changing economic conditions. Journal of Finance 51, 425-461.
    Fung, W., Hsieh, D., (1997). Is mean variance analysis applicable to hedge funds? Economic Letters 62, 53-58.
    Fung, W., Hsieh, D., (2000). Performance characteristics of hedge funds and CTA funds: natural versus spurious biases. Journal of Financial and Quantitative Analysis 35, 291-307.
    Fung, W., Hsieh, D., (2001). The risk in hedge fund strategies: theory and evidence from trend followers. Review of Financial Studies 14, 313-341.
    Fung, W., Hsieh, D., Naik, N., Ramadorai, T., (2008). Hedge funds: performance, risk, and capital formation. Journal of Finance 63, 1777-1803.
    Gregoriou, G. N., Hubner, G., and Kooli, M. (2010). Performance and persistence of commodity trading advisors: Further evidence. Journal of Futures Markets 1, 1–28.
    Gregoriou, G. N., Hubner, G., Papageorgiou, N., and Rouah, F. (2005). Survival of commodity trading advisors: 1990-2003. The Journal of Futures Markets 25, 795–815.
    Kandel, S., Stambaugh, R. F. (1996). On the predictability of stock returns: an asset-allocation perspective. Journal of Finance 51, 385-424.
    Kazemi, H., and Li, Y. (2009). Market timing of ctas: An examination of systematic ctas vs. discretionary ctas. Journal of Futures Markets 29, 1067–1099.
    Kosowski, R., Naik, N., Teo, M., (2007). Do hedge funds deliver alpha? A bootstrap and Bayesian approach. Journal of Financial Economics 84, 229-264.
    Liang, Bing (2000). Hedge funds: the living and the dead. Journal of Financial and Quantitative Analysis 35, 309-326.
    Moskowitz, T., (2000). Discussion: mutual fund performance: an empirical decomposition into stockpicking talent, style, transactions costs, and expenses. Journal of Finance 55, 1695-1703.
    Pesaran, M.H., Timmermann, A., (1995). Predictability of stock returns: robustness and economic significance. Journal of Finance 50(4), 1201-1228.
    Titman, S., and Tiu, C. (2010). Do the best hedge funds hedge? The Review of Financial Studies 24(1), 123–168.
    Wermers, R., (2000). Mutual fund performance: an empirical decomposition into stock-picking talent, style, transactions costs, and expenses. Journal of Finance 55, 1655-1703.

    無法下載圖示 校內:2019-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE