簡易檢索 / 詳目顯示

研究生: 王鴻文
Wang, Hung-wen
論文名稱: 複合型光子晶體之負折射聚焦分析
Focusing Analysis in a Complex Photonic Crystal Slab with Negative Refraction
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 95
中文關鍵詞: 光子晶體負折射
外文關鍵詞: photonic crystal, negative refraction
相關次數: 點閱:82下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的日新月異,新式光電元件的功能及重要性也與日俱增。近年來,超常材料就扮演相當重要的角色,其光學特性也應用於許多新型的光學元件中,如完美透鏡,主要原因是其具有很高的成像解析度以克服繞射極限的問題。擁有負折射率的材料在最近是相當熱門的,將人造複合材料或介電材料作週期性排列後,發現可產生負折射的現象,稱此結構為超常材料或光子晶體。由於光子晶體結構在其傳導區具有獨特的色散特性,因此也會發生特殊的波傳性質,而利用光子晶體來設計完美透鏡以聚焦電磁波的概念已被論證其可行性。
    本文主要的研究為提出一新式的光子晶體來達到次波長聚焦之目的。此新式結構為在單位晶胞內包含不同半徑之介電圓柱,並作週期性排列所組成。我們利用有限元素法與時域有限差分法來模擬光學聚焦之特性,並用平面波展開法來求解馬克斯威爾方程式。值得注意地,相較於一般三角晶格之介電柱光子晶體,我們提出的複合型光子晶體能尋找到等效折射率為-1的聚焦特性。接著,在光子晶體平板介面設計一抗反射層,來增加光波的穿透率。而數值模擬也證明,在邊界適當的加入一排抗反射層,能使聚焦解析度有大幅的提升。此種光子晶體平面透鏡可應用於光學成像系統的設計,例如:光微影製程技術或近場光學顯微鏡。

    Metamaterials currently play an important role in providing new functionalities and enhancements to the future electronic devices and components. The major trend today is to create the fundamentally new properties required by new technologies. Metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Materials with negative refractive index attracted lots of interest recently because they can be realized with metamaterials or photonic crystals (PCs), which are usually periodic structures. Specifically, the diffraction of PCs leads to the effective negative refraction such that a so-called perfect lens is feasible and able to focusing the electromagnetic wave beyond the diffraction limit.

    This research focuses on the optical properties and the sub-wavelength focusing of a novel photonic crystal (PC). We propose an innovated PC slab and investigate its optical properties and the focusing numerically by both finite-difference-time-domain and finite element methods. The PC is composed of an array of two-dimensional hexagonal with dielectric cylinders inside each unit cell. As the different radius of the cylinder varies, the plane wave expansion method is employed for solving Maxwell’s equations. Interestingly, the complex PC, whose radius of each cylinder is different, can generate focusing with an effective refractive index of 1. The design as the antireflection structures to enhance the transmission efficiency of light at the interfaces between the air and the PC slab was proposed in this research. Numerical simulations show that the focusing resolution can be improved greatly by appropriately adding the surface of the slab. Such a mechanism of negative refraction PCs could open up a new application in optical imaging systems, such as optical lithography or near-field optical microscopy.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XVI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 本文架構 5 第二章 數值方法 9 2-1 前言 9 2-2 平面波展開法 9 2-2-1正方晶格(square lattice) 12 2-2-2三角晶格(triangular lattice) 12 2-3 時域有限差分法 13 2-3-1 完美匹配吸收層 16 2-4 有限元素法 21 2-4-1 Galerkin Method 21 2-4-2 邊界條件 25 第三章 光子晶體負折射及成像系統 33 3-1 前言 33 3-2 折射角與等頻圖 33 3-2-1 弱調制(weak modulated)和強調制(strong modulated) [16] 34 3-2-2 折射角和等頻圖之判斷 35 3-3 完美透鏡(Perfect lens) 36 3-4 正方晶格成像 37 3-4-1 色散曲線與等頻圖分析 37 3-4-2 有限元素法模擬 38 3-4-3 FDTD模擬 39 3-5 三角晶格成像 40 3-5-1 色散曲線與等頻圖分析 40 3-5-2 有限元素法與FDTD模擬 41 3-5-3 三角晶格與正方晶格之成像比較 [38] 42 3-6 超透鏡與材料性質的關係 [48] 43 第四章 三角晶格光子晶體之延伸與聚焦解析度 59 4-1 前言 59 4-2 晶格排列之延伸 59 4-3 晶格討論 60 4-4 負折射及聚焦系統 62 4-5 次波長聚焦解析度 66 第五章 結論與未來展望 89 5-1 結論 89 5-2 未來展望 90 參考文獻 91 自述 95

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, Vol.58, No.20, pp.2058-2062 (1987).
    [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, Vol.58, No.23, pp.2486-2489 (1987).
    [3] J. D. Jannopolous, R. D. Meade and J. N. Winn, “Photonic Crystal,” (Princeton U. Press, Princeton, N.J., 1995).
    [4] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp, Vol.10, No.4, pp.509-514 (1968).
    [5] E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Physical Review Letters, Vol.63, pp.1950-1953 (1989).
    [6] K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of photonic gap in periodic dielectric structures,” Physical Review Letters, Vol.65, pp.3152-3155 (1990).
    [7] E. Yablonovitch, T. J. Gmitter and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Physical Review Letters, Vol.67, pp.2295-2298 (1991).
    [8] M. Plihal, A. Shambrook, A. A. Maradudin and P. Sheng, “Two-dimensional photonic band structures,” Optics Communications, Vol.80, pp.199-204 (1991).
    [9] M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Physical Review B, Vol.44, pp.8565-8571 (1991).
    [10] T. Hass, A. Hesse and T. Doll, “Omnidirectional two-dimensional photonic crystal band gap structures,” Physical Review B, Vol.73,No.4, 045130 (2006).
    [11] C. Y. Liu and L. W. Chen, “Tunable photonic crystal waveguide coupler with nemetic liquid crystals,” IEEE Photonics Technology Letters, Vol.16, No.8, pp.1849-1851 (2004).
    [12] C. Y. Liu and L. W. Chen, “Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation,” Optics Express, Vol.12, No.12, pp.2616-2624 (2004).
    [13] C. Y. Liu and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Physical Review B, Vol.72, 045133 (2005).
    [14] R. A. Shelby, D. R .Smith and S. Schultz, “Experimental verification of a negative index of refraction,” Science, Vol.292, pp.77-79 (2001).
    [15] J. F. Woodley and M. Mojahedi, “Negative group velocity and group delay in left-handed media,’’ Physical Review E, Vol.70, 046603 (2004).
    [16] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Physical Review B, Vol.62, No.16, pp.10696-10705 (2000).
    [17] B. Gralak, S. Enoch and G. Taybe, “Anomalous refractive properties of photonic crystals,” Journal of the Optical Society of America A, Vol.17, No.6, pp.1012-1020 (2000).
    [18] S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Physical Review B, Vol.67, 235107 (2003).
    [19] S. Foteinopoulou, E. N. Economou and C.M. Soukoulis, “Refraction in Media with a Negative Refractive Index,” Physical Review Letters, Vol.90, No.10, 107402 (2003).
    [20] S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals:A study of anomalous refractive effects,” Physical Review B, Vol.72, 165112 (2005).
    [21] R.Gajić, R.Meisels, F.Kuchar and K.Hingerl, “Refraction and rightness in photonic crystals,” Optics Express, Vol.13, No.21, pp. 8596-8605 (2005).
    [22] Z.C. Ruan, M. Qiu, S.S. Xiao, S.L. He, L. Thylén, “Coupling between plane waves and Bloch waves in photonic crystals with negative refraction,” Physical Review B, Vol.71, 045111 (2005).
    [23] A. Martínez, H. Míguez, A. Griol, J. Martí, “Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens,” Physical Review B, Vol.69, 165119 (2004).
    [24] Y. Y. Wang and L. W. Chen, “Tunable negative refraction photonic crystals achieved by liquid crystals,” Optics Express, Vol.14, No.22, pp.10580-10587 (2006).
    [25] Y. Y. Wang, J. Y. Chen, and L. W. Chen, “Optical switches based on partial band gap and anomalous refraction in photonic crystals modulated by liquid crystals,” Optics Express, Vol.15, No.16, pp.10033-10040 (2007).
    [26] D. Scrymgeour, N. Malkova, S. Kim and V. Gopalan,“Electro-optic control of the superprism effect in photonic crystal,” Applied Physics Letters, Vol.82, No.19, pp.3176-3178 (2003).
    [27] S. Xiong and H. Fukshima, “Analysis of light propagation in index-tunable photonic crystals,” Journal of Applied Physics, Vol. 94, 1286 (2003).
    [28] J. Li, M. H. Lu, L. Feng, X. P. Liu and Y. F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” Journal of Applied Physics, Vol. 101, 013516 (2007).
    [29] W. Park and J. B. Lee, “Mechanically tunable photonic crystal structure,” Applied Physics Letters, Vol.85, No.21, pp.4845-4847 (2004)
    [30] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, Vol.85, No.18, pp.3966-3969 (2000).
    [31] C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “All-angle negative refraction without negative effective index,” Physical Review B, Vol. 65, 201104 (2002).
    [32] P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, “Imaging by flat lens using negative refraction,” Nature, Vol.426, 404 (2003).
    [33] Z. Lu, S. Shi, C. A. Schuetz and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Optics Express, Vol.13, No.3, pp.2007-2012 (2005).
    [34] A. Berrier, M. Mulot, M. Swillo, M. Qu, L.Thylén, A. Talneau and S. Anand, “Negative refraction at infrared wavelength in a two-dimensional photonic crystal,” Physical Review Letters, Vol.93, No.7, 073902 (2004).
    [35] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1 and C.M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Physical Review Letters, Vol.91, No.20, 207401 (2003).
    [36] S. Feng, Z. Y. Li, Z. F. Feng, K. Ren, B. Y. Cheng and D. Z. Zhang, “Focusing properties of a rectangular-rod photonic-crystal slab,” Journal of Applied Physics, Vol.98, pp.63102 (2005).
    [37] S. Feng, Z. Y. Li, Z. F. Feng, B. Y. Cheng and D. Z. Zhang, “Imaging properties of an elliptical-rod photonic-crystal slab lens,” Physical Review B, Vol. 72, 075101 (2005).
    [38] X. Wang, Z. F. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two dimensional photonic crystal,” Optics Express, Vol.12, No.13, pp.2919-2924 (2004).
    [39] R. Zengerle and P. C. Hoang, “Wide-angle beam refocusing using negative refraction in non-uniform photonic crystal waveguides,” Optics Express, Vol.13, No.15, pp.5719-5730 (2005).
    [40] R. Zengerle and P. C. Hoang, “All-angle beam refocusing in nonuniform triangular photonic crystal slabs,” Journal of the Optical Society of America B, Vol.24, No.4, pp.997-1003 (2007).
    [41] A. Martinez and J. Marti, “Analysis of wave focusing inside a negative-index photonic-crystal slab,’’ Optics Express, Vol.13, No.8, pp.2858-2868 (2005).
    [42] S. Xiao, M. Qiu, Z. Ruan and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Applied Physics Letters, Vol.85, No.19, pp.4269-4271 (2004).
    [43] X. Wang and K. Kempa, “Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs,” Physical Review B, Vol. 71, 085101 (2005).
    [44] G. Sun, A. S. Jugessur and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances,” Optics Express, Vol.14, No.15, pp.6755-6765 (2006).
    [45] H. Zhang, L. Shen, L. Ran and Y.Yuan, “Layered superlensing in two-dimensional photonic crystals,” Optics Express, Vol.14, No.23, pp.11178-11183 (2006).
    [46] Z. Tang, R. Peng, Y. Ye, C. Zhao, D. Fan, H. Zhang, and S. Wen, “Optical properties of a square-lattice photonic crystal within the partial bandgap,’’ Journal of the Optical Society of America A , Vol.24, No.2, pp.379-384 (2007).
    [47] G. Sun and A. G. Kirk, “Analyses of negative refraction in the partial bandgap of photonic crystals,’’ Optics Express, Vol.16, No.6, pp.4330-4336 (2008).
    [48] X. Sun, X. Tao, and K. Kwan, “Effects of material composition on the superlens frequency of photonic crystals,’’ Journal of the Optical Society of America B, Vol.25, pp.571-575 (2008).
    [49] J. Li, M. H. Lu, T. Fan, X. K. Liu, L. Feng, Y. F. Tang, and Y. F. Chen, “All-angle negative refraction imaging effect with complex two-dimensional hexagonal photonic crystals,” Journal of Applied Physics, Vol.102, 073538 (2007).
    [50] K. Ren, Z.Y. Li, X. Ren, B. Cheng and D. Zhang, “Tunable negative refraction by electro-optical control in two-dimensional photonic crystal,” Applied Physics A, Vol.87, pp.181-185 (2007).
    [51] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, Vol.14, pp.302-307 (1996).
    [52] A. Taflove and S. S. Hagness, Computational electrodynamics: The finite-difference time-domain method, Artech House, Boston (2000).
    [53] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, Vol.114, pp.185-200 (1994).
    [54] Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Transactions on Antennas and Propagation, Vol.43, pp.1460-1463(1995).
    [55] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Transactions on Antennas and Propagation, Vol.44, pp.1630-1639 (1996).
    [56] P. G. Luan and K. D. Chang, “Superlensing effect without obvious negative refraction,” Journal of Nanophotonics, Vol.1, 013518 (2007).

    下載圖示 校內:2009-07-25公開
    校外:2009-07-25公開
    QR CODE