簡易檢索 / 詳目顯示

研究生: 張誠順
Chang, Cheng-Shun
論文名稱: 柱狀電流電阻率量測系統之建立並應用於可撓式基板微晶矽薄膜太陽能電池
The System Developed for Cylindrical Current Resistivity Measurements and Application to the μc-Si Thin Film Solar Cell with Flexible Substrate
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 86
中文關鍵詞: 電阻率薄膜太陽能電池微晶矽四點探針法凡德堡法
外文關鍵詞: Resistivity, Thin Film Solar Cells, Microcrystalline Silicon, Four-Point Probe Method, van der Pauw method
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究鑒於目前電阻率量測法於實用上的可靠度不足而進行改善,並自行設計一使用便利、且易於實測中符合理論電場分布假設之柱狀電流電阻率量測法,改善四點探針法與凡德堡法點電流理論難以實踐的問題。為了要印證此柱狀電流法的量測準確度與穩定度,首先本研究利用二次離子質譜儀SIMS分析P-type矽晶圓硼離子參雜濃度並透過理論計算其電阻率做為量測之標準片,分別利用三種電阻率量測法對此標準片進行量測,從量測結果中顯示柱狀電流法的確較現行兩種電阻率量測法為精準且穩定。驗證柱狀電流法後,再將此量測法應用於微晶矽薄膜太陽能電池電阻率量測上,並輔以表面分析探討其電阻率與結晶狀況及表面形貌的關係。
    在薄膜量測中雖然沒有標準片可以印證各量測法的精確性,但從各種量測法電阻率實測與表面分析交互參照的結果看來,表面的結晶率越高、晶球分布越密集、空孔越少、表面粗糙度Ra值越低則其電阻率會呈現越低的趨勢;而柱狀電流法在此薄膜量測中有0.92以上高的實測與理論擬合R-Square值,且組與組間量測結果的一致性也相當高,優於現行普遍使用的兩種量測法。

    In this study, given the present resistivity measurement method's reliability in the lack of practical improvements, and to design a system of cylindrical current resistivity measurement method to improve the point current theory in four-point probe method and van der Pauw method is difficult to practice issues; in order to prove the measurement accuracy and stability of cylindrical current method, first we analysis of P-type silicon wafer is boron doping concentration by SIMS and the resistivity through theoretical calculations do measurement standards for the resistivity were measured using three methods to measure this standard piece, from the results shown in cylindrical current method are actually higher than the present resistivity measurement method for the accurate and stable, then we again this measurement method used in microcrystalline silicon thin film solar cells on the resistivity measurements and supplemented by surface analysis of the crystallization conditions and surface topography.
    Although the film measurements we do not have a standard piece can confirm the accuracy of the three measurement method, but three measurement method of resistivity measurement and cross-reference the results of the surface analysis, the higher rate of crystalline fraction, surface crystal ball distribution more intensive, less hole, the lower surface roughness is the lower resistivity will show a trend; cylindrical current method in this film has more than 0.92 measured with the theoretical fitting of the high R-Square value, and the group and group consistency of measurement results is quite high, better than the other two measurement methods.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 IX 表目錄 XII 符號說明 XIII 第一章 緒論 1 1.1前言 1 1.2 文獻回顧 2 1.3 研究目的與內容 5 第二章 基本理論 6 2.1電阻率與電阻率量測法 6 2.1.1電阻率(Resistivity) 6 2.1.2兩點探針法 8 2.1.3四點探針法 10 2.1.4 凡德堡法 11 2.1.5 電阻分布分析 13 2.2電阻率量測理論推導 14 2.2.1 點接觸式電阻率量測法理論推導 14 2.2.2 柱狀電流電阻率量測法理論推導 16 2.3 矽晶圓離子參雜濃度與電阻率之理論計算 19 2.3.1 離子摻雜濃度與載子遷移率 19 2.3.2 離子摻雜濃度與電阻率 20 第三章 實驗規劃 30 3.1 實驗目的 30 3.2製備可撓式微晶矽薄膜太陽能電池試件 30 3.3電阻率量測 31 3.3.1柱狀電流電阻率量測法設備配置 31 3.3.2四點探針量測 33 3.3.3 霍爾量測(凡德堡法) 33 3.4 表面分析 34 3.4.1 拉曼光譜分析 34 3.4.2 高解析熱電子型場發射掃描式電子顯微鏡 35 3.4.3 原子力顯微鏡分析 35 第四章 結果與討論 39 4.1 矽晶圓標準片電阻率計算與量測 39 4.1.1 矽晶圓標準片 39 4.1.2 矽晶圓標準片載子濃度、載子電量分析與量測 40 4.1.3 矽晶圓標準片載子遷移率、電阻率理論計算 41 4.1.4 四點探針法與凡德堡法量測標準片電阻率分析 42 4.1.5 柱狀電流電阻率量測法量測標準片電阻率分析 44 4.1.6 矽晶圓標準片各類電阻率量測法測結果綜合分析比較 45 4.2 微晶矽薄膜太陽能電池表面形貌與結晶率分析 46 4.2.1 拉曼光譜分析與結晶率計算結果 46 4.2.2 掃描式電子顯微鏡SEM分析結果 46 4.2.3 掃描探針顯微鏡AFM分析結果 48 4.3 微晶矽薄膜太陽能電池電阻率量測分析 50 4.3.1 四點探針法電阻率量測結果 50 4.3.2 凡德堡法電阻率量測結果 51 4.3.3 柱狀電流電阻率量測法量測結果 51 第五章 結論與未來研究方向 81 5.1 結論 81 5.2 未來研究方向 82 參考文獻 84

    [1] F. Wenner, “A Method of Measuring Earth Resistivity,” Bulletin of the Bureau of Standards 12, 478-496,1915
    [2] L.B. Valder, “Resistivity Measurements on Germanium for Transistors,” Proc. IRE 42, 420-427, Feb. 1954
    [3] H.H. Wieder, “Four Terminal Nondestructive Electrical and Galvanomagnetic Measurements,” in Nondestructive Evaluation of Semiconductor Material and Device (J.N. Zemel, ed.), Plenum Press, 67-104, NY,1979
    [4] F.M. Smits, “Measurement of Sheet Resistivity with the Four-Point Probe,” Bell Syst. Tech. J. 37,711-718, May 1958
    [5] M.G. Buehler, “A Hall Four-Point Probe on Thin Plates,” Solid-State Electron. 10, 801-812, Aug. 1967
    [6] M. Yamashita, “Geometrical Correction Factor for Resistivity of Semiconductors by the Square Four-Point Probe Method,” Japan. J. Appl. Phys. 25, 563-567, April 1986.
    [7] D.S. Perloff, “Four-Point Probe Sheet Resistance Correction Factors for Thin Rectangular Samples,” Solid-State Electron. 20, 681-687, Aug.1977.
    [8] ASTM Standard F84, “Standard Method for Measuring Resistivity of Silicon Slices with a Collinear Four-Point Probe,” 1988 Annual Book of ASTM Standards, Am. Soc. Test., Philadelphia, 1988
    [9] L.J. Van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Research Reports, 1958
    [10] L.J. Van der Pauw, “A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,” Philips Technical Review, 1958
    [11] M. Levy and M.P. Sarachik “Measurement of the Hall coefficient using van der Pauw method without magnetic field reversal,” Review of Scientific Instruments, 1989
    [12] L. Bardelli, G. Poggi, G. Pasquali, M. Bini “A method for non-destructive resistivity mapping in silicon detectors,”
    [13] Ivo Krˇivka, Jan Prokes, Jaroslav Stejskal, “Resistivity mapping: An example of aged conducting polymer,” Polym. Degrad. Stab. 92, 829–837, 2007
    [14] N.V. Baranov” Physical properties of metamagnetic Laves phases (Y1-xRx)Co2 in the critical region”
    [15] A. Bid, A. Bora, A.K. Raychaudhuri, “Temperature dependence of the resistance of metallic nanowires of diameter >=15 nm: Applicability of Bloch-Grüneisen theorem,” Physical Review B, 2006 - APS
    [16] J.S. Steinhart, S.R. Hart, “Calibration curves for thermistors,” Deep Sea Research and Oceanographic Abstracts, Volume 15, Issue 4, August 1968,
    [17] D.K. Schroder, “Semiconductor material and device characterization ,” John Wiley& Sons, 2-34, 1990
    [18] M.W. Denhoff, “An accurate calculation of spreading resistance,” Journal of Physics D: Applied Physics, 2006
    [19] N.N. Polyakov, V.L. Kon'kov, “Spreading resistance of a flat circular contact,” Russian Physics Journal, 1970 Springer
    [20] S.H. Lim, D.R. McKenzie, M.M. Bilek and M. M. M. Bilek, “van der Pauw method for measuring resistivity of a plane sample with distant boundaries,” Rev. Sci. Instrum. 80, 075109, 2009
    [21] L.V. Bewley, “Two dimensional field in electrical engineering,” The MacMillan Company, New York, 1948.
    [22] M. I. Current and M. J. Market, “Mapping of Ion Implanted Wafers,” in Ion Implantation: Science and Technology (J. F. Ziegler, ed.), Academic Press, Orlando, FL, 487-536, 1984
    [23] D.S. Perloff, F.E. Wahl, J. Conragan, “Four-Point Sheet Resistance Measurements of Semiconductor Doping Uniformity,” Journal of The Electrochemical. Soc.124, 582-590, 1977
    [24] J.N. Gan, D.S. Perloff, “Post-Implant Methods for Characterizing the Doping Uniformity and Dose Accuracy of Ion Implantation Equipment,” Nucl. Instrum. and Meth. 189, 265-274, 1981.
    [25] M.I. Current and W.A. Keenan, “Ion Implant Round Robbins”, Nucl. Instrum. and Meth. B6, 418-426, 1985.
    [26] R.H. Franken, R.L. Stolk, H. Li, C.H.M. van der Werf, J.K. Rath, R.E.I. Schropp, J. Appl. Phys. 102 (2007) 014503.
    [27] L.B. Valdes, “Effect of electrode spacing on the equivalent base resistance of point-contact transistors,” Proceedings of the IRE, 1952
    [28] R.L. Stolk, H. Li, R.H. Franken, J.J.H. Strengers, C.H.M. van derWerf, J.K. Rath, R.E.I. Schropp, J. Non-Cryst. Solid 352 (2006),1933-1936.
    [29] E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, and Z.Sun, J. Appl. Phys., 86[11]6078-83(1999).
    [30] 汪建民主編, “材料分析” ,中國材料科學學會, 1998
    [31] 戴寶通, 鄭晃忠, “太陽能電池技術手冊” 台灣電子材料與元件協會出版, 2008
    [32] Bart Van Zeghbroeck, “Principles of Semiconductor Devices” ,2007

    下載圖示 校內:2012-07-30公開
    校外:2012-07-30公開
    QR CODE