| 研究生: |
張繼鴻 Chang, Chi-Hung |
|---|---|
| 論文名稱: |
利用衛星測高與實測水文資料分析海表面與海面下地轉流 Analysis of Surface and Subsurface Geostrophic Currents Derived from Satellite Altimetry and In-situ Hydrographical Data |
| 指導教授: |
郭重言
Kuo, Chung-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 衛星測高 、GOCE 、時變地轉流 |
| 外文關鍵詞: | Satellite altimetry, GOCE, Time-variant geostrophic currents |
| 相關次數: | 點閱:134 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多研究已證實海洋環流對氣候穩定與人類生活極為重要性,其變化亦與潛在之天然災害高度相關,因此近幾世紀來,持續監測海洋環流一直是備受重視的議題。本研究使用多顆衛星測高資料、重力衛星測得之大地水準面模型(GOCE或GRACE)、實測水文資料求解全球中尺度地轉流流速。為了減少絕對動力水面高之誤差,本研究使用傳統pointwise法、spectral法與profile法對海水面高度與大地水準面模型進行處理,解算流速結果與TAO/TRITON、PIRATA提供之水深10 m處23站實測流速進行比較,結果顯示spectral法結果之平均均方根為10~15 cm/s,有70%~90%測站之均方根較傳統pointwise法小或有同等級精度(1 cm/s以內差值);而使用profile法結果之平均均方根為8~10 cm/s,並有超過90%測站之均方根較傳統pointwise法小或是有同等精度,顯示profile法為三種方法中最佳。另外,GOCE大地水準面應用在時變地轉流計算上之,約有60%~80%之測站之均方根較GRACE小。而東西方向時變流速與實測資料之平均相關係數為0.6~0.7;南北方向則為0.3~0.4,使用不同方法與大地水準面對相關係數造成之影響並不明顯(平均差值0.1以內)
進一步分析地轉流流速、體積傳輸量與氣候指標之相關性,對特定洋流截面包含墨西哥灣流(Gulf Stream)、拉布拉多洋流(Labrador Current)與冬季北大西洋震盪指標(North Atlantic Oscillation, NAO)以及黑潮(Kuroshio Current)與多變異聖嬰現象與南方震盪指標(Multivariate ENSO Index, MEI)間之關係作探討,結果顯示東西向墨西哥灣流流速、體積傳輸量與冬季NAO之相關係數為0.7 (1年延遲),或許與灣流路徑之南北移動有關;南北向之拉布拉多洋流流速,特別在深度500 m以下,相關係數0.5 (無延遲),而通過截面之南北向總體積傳輸量亦呈現同樣結果,對於冬季NAO之快速反應推測與拉布拉多洋流之變化主要為正壓性質(barotropic)有關。在北太平洋,吾人選取黑潮通過巴士海峽、台灣東北方與黑潮擴張流處之截面,於巴士海峽近表層處之東西向、黑潮擴張流處之南北向流速和MEI存在最大負相關約 -0.4,體積傳輸量則為-0.3~ -0.4;而東西向黑潮擴張流流速和MEI則存在最大正相關約0.4,體積傳輸量則為0.3,相較於台灣東北邊截面之最大相關係數僅約0.1~0.2,於巴士海峽與黑潮擴張流處與MEI之相關性相對更加顯著。
Studies have shown that ocean circulations are highly important for the climate stability and human life. Their variations are also highly connected to potential natural hazards; therefore, continuous monitoring of ocean circulations has been a highly respected issue over the past centuries. The research uses multiple satellite altimetry data, satellite-only geoid model (GOCE or GRACE), in-situ hydrographical data to determine mesoscale geostrophic current velocities globally. To reduce the errors remain in ADT, the research adopts conventional pointwise approach, spectral approach, and profile approach to process Sea Surface Height (SSH) and geoid models. In-situ current meter observations at 23 stations fixed at 10m depth from TAO/TRITON and PIRATA were taken as ground truth. Results show that when adopting the spectral approach, around 70%~90% of stations gives Root Mean Square (RMS) smaller than or at same accuracy level (within 1 cm/s) compared with the pointwise approach and the averaged RMS is about 10~15 cm/s, while there are over 90% of stations giving RMS smaller than or at same accuracy level with pointwise approach and averaged RMS is around 8~10 cm/s when adopting profile approach, which better improves the conventional pointwise approach. GOCE geoid model was also proved to perform better than GRACE geoid in determining geostrophic currents from time-variant perspective with 60%~80% of stations giving smaller RMS. On the other hand, the average correlation coefficients are all around 0.6~0.7 and 0.3~0.4 in zonal and meridional direction, respectively, with no significant discrepancy when adopting different approach or geoid model (average difference within 0.1).
The correlation coefficients between geostrophic current velocities, volume transports through the Gulf Stream (GS), Labrador Current (LC) and wintertime North Atlantic Oscillation (NAO) were estimated, while the correlations of Kuroshio Current (KC) and El Niño/Southern Oscillation (ENSO) were evaluated by using Multivariate ENSO Index (MEI). Results show the correlation coefficient of 0.7 with 1-year lag between GS and wintertime NAO in zonal direction which may relate to the north-southward shift of GS pathway, while LC velocities show the correlation coefficient of 0.5 in meridional direction with zero-lag. The meridional volume transport through the transect also shows the same maximum correlation coefficient and lag time. Such fast response may due to the barotropic nature of LC variability. In the North Pacific Ocean, transects through the Bashi Channel, the northeast of Taiwan, and Kuroshio Extension were chosen. Comparatively higher correlations with MEI are in the meridional currents through the Kuroshio Extension and near-surface zonal currents through the Bashi Channel with maximum negative correlation coefficient of -0.4 and -0.3~ -0.4 for volume transports; Zonal currents through Kuroshio Extension shows maximum positive correlation coefficient of 0.4 and 0.3 for volume transports. Results indicate that correlations in the transect through Bashi Channel and Kuroshio Extension are all higher than those in the transect of the northeast of Taiwan where only gives correlation coefficient of 0.1~0.2.
Albertella, A., Savcenko, R., Janjic, T., Rummel, R., Bosch, W. and Schröter, J., High resolution dynamic ocean topography in the Southern Ocean from GOCE, Geophysical Journal International, Vol. 190, pp. 922-930 (2012).
AVISO, AVISO user handbook for Merged Topex/Poseidon products, AVI-NT-02-101, Edition 3.0 (1996).
AVISO and PODAAC user handbook for IGDR and GDR Jason procucts, SALP-MU-M5-OP-13184-CN, Edition 4.2 (2012).
AVISO, www.aviso.altimetry.fr/
Bingham, R. J., Haines, K. and Hughes, C. W., Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid, Journal of Atmospheric and Oceanic Technology., Vol. 25, pp. 1808-1822 (2008).
Bingham, R. J., Knudsen , P., Andersen, O. and Pail, R., An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE, Geophysical Research Letter, Vol. 38, L01606 (2011).
Bosch, W., and Savcenko, R., On estimating the dynamic ocean topography – a profile approach. Gravity, Geoid and Earth Observation, IAG Symposia 135, pp. 263-269 (2010).
Bosch, W., Savcenko, R., Dettmering, D., Schwatke, C., A two-decade time series of eddy-resolving dynamic ocean topography (iDOT), 20 years of progress in radar altimetry, Venice (2012).
Bourles, B., Lumpkin, R., McPhaden, M.J., Hernandez, F., Nobre, P., Campos, E., Yu, L., Planton, S., Busalacchi, A., Moura, A.D., Servain, J. and Trotte, J., The PIRATA program: History, accomplishments, and future directions, Bulletin of the American Meteorological Society, Vol. 89, pp. 1111-1125 (2008).
Bright, R. J., Xie, L., Pietrafesa, L. J., Evidence of the Gulf Stream’s influence on tropical cyclone intensity, Geophysical Research Letter, Vol. 29, No. 16, pp. 48-1 – 48-4 (2002).
Cadden, D. D. H., Subrahmanyam, B., Chambers, D. P. and Murty, V. S. N., Surface and subsurface geostrophic current variability in the Indian Ocean from altimetry, Marine Geodesy, Vol. 32, pp. 19–29 (2009).
Cheng, W., Chiang, J. C. H, and Zhang, D., Atlantic meridional overturing circulation (AMOC) in CMIP5 models: RCP and historical simulations, Journal of Climate, Vol. 26, pp. 7187-7197 (2013).
Chovitz, B.H., Geodetic results from Seasat, Marine Geodesy, Vol. 7, pp. 315-330 (1983).
CSR, http://www.csr.utexas.edu/
Davies, K., Ionospheric radio, IEEE electromagnetic waves series 31, The Institution of Engineering and Technology, London, pp. 580 (1990).
ESA, http://www.esa.int/ESA
Ezer, T., Atkinson, L.P., Corlett, W.B., and Blanco, J.L., Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast, Journal of Geophysical Research: Oceans, Vol. 118, pp.685-697 (2013).
Feng, G., Jin, S., and Sanchez-Reales, J. M., Antarctic circumpolar current from satellite gravimetric models ITG-GRACE2010, GOCE-TIM3 and satellite altimetry, Journal of Geodynamics, Vol. 72, pp. 72-80 (2013).
Forsberg, R., A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling, Rep. 355, Department of Geodetic Science and Surveying, Ohio State University, Columbus (1984).
Frankignoul, C., Coetlogon, G. de, Joyce, T., and Dong, S., Gulf Stream variability and ocean-atmosphere interactions, Journal of Physical Oceanography, Vol. 31, pp.3516-3529 (2001).
Fu, L.L. and Cazenave, A., Satellite altimetry and Earth sciences, Academic Press, San Diego, pp. 463 (2001).
GFZ, http://www.gfz-potsdam.de/startseite/
Gommenginger, C.P. and Srokosz, M.A., Sea state bias-20 years on, 15 years of progress in radar altimetry, Venice (2006).
Han, G., Ohashi, K., Chen, N., Myers, P.G., Nunes, N., and Fischer, J., Decline and partial rebound of the Labrador Current 1993-2004: Monitoring ocean currents from altimetric and conductivity-temperature-depth data, Journal of Geophysical Research, Vol. 115, C12012 (2010).
Heiskanen, W. A. and Moritz, H., Physical Geodesy, W. H. Freeman and Company, San Francisco, pp. 364 (1967).
Horowitz, I.L., Contemporary Earth Science, Amsco school publications, Inc., New York, pp. 339 (1976).
Hsin, Y.C., Wu, C.R. and Shaw, P.T., Spatial and temporal variations of the Kuroshio east of Taiwan, Journal of Geophysical Research, Vol. 113, C04002 (2008).
Hurrell, J.W., Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, Vol. 269, pp. 676-679 (1995).
Hurrell, J.W., Kushnir, Y., Ottersen, G. and Visbeck, M., The North Atlantic Oscillation: Climatic significance and environmental impact, AGU, Washington, DC, pp. 279 (2003).
Hurrell, J.W. and Deser, C., North Atlantic climate variability: The role of the North Atlantic oscillation, Journal of Marine Systems, Vol. 78, pp. 28-41 (2009).
Ishii, M. and Kimoto, M., Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections, Journal of Oceanography, Vol. 65, pp. 287–299 (2009).
Jekeli, C., Alternative methods to smooth the earth’s gravity field, Rep. 327, Department of Geodetic Science and Surveying, Ohio State University, Columbus (1981).
Joyce, T.M., Deser, C., Spall, M., The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation, Journal of Climate, Vol. 13, pp. 2550-2569 (2000).
JPL, http://www.jpl.nasa.gov/
Kao, S.J., Wu, C.R., Hsin, Y.C. and Dai, M., Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough, Geophysical Research Letter, Vol. 33, L16604 (2006).
Kaula, W.M., The Terrestrial Environment: Solid Earth and Ocean Physics., Application of Space and Astronomic Techniques, Report of a Study at Williamstown, Massachusetts, August 1969, to the National Aeronautics and Space Administration, Cambridge, Massachusetts (1969).
Kenyon, S.C. and Forsberg, R., New gravity field for the Arctic, Eos Transactions AGU, Vol.89, No.32, pp. 289-290 (2008).
KESS, http://uskess.org/index.html
Knudsen, P., Bingham, R. J., Andersen, O. and Rio, M.-H., A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model, Journal of Geodesy, Vol. 85, pp. 861-879 (2011).
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M. and Rahmstorf, S., On the driving processes of the Atlantic meridional overturning circulation, Reviews of Geophysics, Vol. 45, RG2001 (2007).
Lagerloef, G. S. E., Mitchum, G. T., Lukas, R. B. and Niller, P. P., Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data, Journal of Geophysical Research, Vol. 104, pp. 23313-23326 (1999).
Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H. and Olson, T.R., The development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA Technical Publication, TP-1998-206861, NASA Goddard Space Flight Center, Washington, D.C., pp. 575 (1998).
Line-W, http://www.whoi.edu/science/PO/linew/
Lukas, R. and Firing, E., The geostrophic balance of the Pacific Equatorial Undercurrent, Deep-Sea Research, Part A, Vol. 31, pp. 61-66 (1984).
Mayer-Gürr, T., ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn, GSTM+SPP, Postdam, 15-17 Oct (2007).
Mayer-Gürr, T., Kurtenbach, E. and Eicker, A., ITG-Grace2010 gravity field model, www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010 (2010).
Mazzarella, A., Giuliacci, A. and Scafetta, N., Quantifying the multivariate ENSO Index (MEI) coupling to CO2 concentration and to the length of day variations, Theoretical and Applied Climatology. Vol. 111, No.3-4, pp. 601-607 (2013).
McCarthy, G., Frajka-Williams, E., Johns, W. E., Baringer, M. O., Meinen, C. S., Bryden, H. L., Rayner, D., Duchez, A., Roberts, C. and Cunningham, S. A., Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N, Geophysical Research Letter, Vol. 39, L19609, pp. 1-5 (2012).
McPhaden, M.J., Zebiak, S.E. and Glantz, M.H., ENSO as an integrating concept in Earth Science, Science, Vol. 314, No. 5806, pp.1740-1745 (2006).
Mestas-Nuñez, A. M. and Miller, A.J., Interdecadal variability and climate change in eastern tropical Pacific: A review, Progress In Oceanography, Vol. 69, Issues 2-4, pp. 267-284, (2006).
Millero, F. J. and Poisson, A., International one-atmosphere equation of state of sea-water, Deep-Sea Research, Vol. 28, pp. 625-629 (1981).
Moore, J.C., Grinstep, A., Jevrejeva, S., Gulf Stream and ENSO increase the temperature sensitivity of Atlantic tropical cyclones, Journal of Climate, Vol. 21, pp.1523-1531 (2008).
Moritz, H., and Mu ̈ller, I.I., Earth Rotation: Theory and observation, Ungar, New York, pp. 617 (1987)
AVISO, OSTM/Jason-2 Products Handbook, SALP – MU – M – OP – 15815 - CN, Issue:1.8 (2011).
Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., Höck, E., Reguzzoni, M., Brockmann, J. M., Abrikosov, O., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansó, F. and Tscherning, C. C., First GOCE gravity field models derived by three different approaches, Journal of Geodesy, Vol. 85, pp. 819-843 (2011).
Pavlis, N. K., Holmes, S. A., Kenyon, S. C. and Factor, J. K., The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)., Journal of Geophysical Research: Solid Earth(1978-2012) Vol. 117, B04406 (2012).
Pérez-Hernández, M.D. and Joyce, T.M., Two modes of Gulf Stream variability revealed in the last two decades of satellite altimetry data, Journal of Physical Oceanography, Vol. 44, pp. 149-163 (2014).
PIRATA, http://www.pmel.noaa.gov/pirata/
Picaut, J., Hayes, S.P. and McPhaden, M.J., Use of the geostrophic approximation to estimate time-varying zonal currents at the equator, Journal of Geophysical Research, Vol. 94, pp. 3228-3323 (1989).
Pierson, W.J., The interpretation of wave spectrums in terms of the wind profile instead of the wind measured at a constant height, Journal of Geophysical Research, Vol.69, pp.5191-5204 (1964).
Pond, S. and Pickard, G.L., Introductory Dynamical Oceanography, Butterworth-Heinemann, Oxford, pp. 329 (1983).
Ross, J.C., On the effect of the pressure of the atmospheric on the mean level of the ocean, Philosophical Transactions of the Royal Society, Vol.144, pp. 285-296 (1854).
Sakamoto, T. T., Hasumi, H., Ishii, M., Emori, S., Suzuki, T., Nishimura, T. and Sumi, A., Responses of the Kuroshio and the Kuroshio Extension to global warming in a high-resolution climate model, Geophysical Research Letter, Vol. 32, L14617 (2005).
Sánchez-Reales, J. M., Vigo, M. I., Jin, S. and Chao, B. F., Global surface geostrophic ocean currents derived from satellite altimetry and GOCE geoid, Marine Geodesy, Vol. 35, pp. 175-189 (2012).
Seeber, G., Satellite Geodesy, W. de Gruyter, Berlin, pp. 589 (2003).
Sherman, K. and Hempel, G., The UNEP Large Marine Ecosystem Report: A perspective on changing conditions in LMEs of the world’s Regional Seas, UNEP Regional Seas Report and Studies No. 182, United Nations Environment Programme, Nairobi, Kenya, pp. 393-402 (2009).
Smith, D.A., There is no such thing as The EGM96 geoid: Subtle points on the use of a global geopotential model, IGeS Bulletin No. 8, International Geoid Service, Milan, Italy, pp. 17-28 (1998).
Smith, W.H.F. and Sandwell, D.T., Global sea floor topography from satellite altimetry and ship depth soundings, Science, Vol.277, pp. 1956-1962 (1997).
Stewart, R.H., Introduction to Physical Oceanography, Department of Oceanography, Texas A&M University, College Station. (2008).
Suzuki, T., Hasumi, H., Sakamoto, T. T., Nishimura, T., Abe-Ouchi, A., Segawa, T., Okada, N., Oka, A., and Emori, S., Projection of future sea level and its variability in a high-resolution climate model: Ocean processes and Greenland and Antarctic ice-melt contributions, Geophysical Research Letter, Vol. 32, L19706 (2005).
Tanaka, K., Ikeda, M. and Masumoto, Y., Predictability of interannual variability in the Kuroshio transport south of Japan based on wind stress data over the North Pacific, Journal of Oceanography, Vol. 60, pp. 283-291 (2003).
TAO/TRITON, http://www.pmel.noaa.gov/tao/data_deliv/deliv.html
Tapley, B.D., Chambers, D.P., Bettadpur, S. and Ries, J.C., Large scale ocean circulation from the GRACE GGM01 geoid, Geophysical Research Letter, Vol. 30, No. 22, 2163 (2003).
Teunissen, P.J.G., and Kleusberg, A., GPS for Geodesy, Springer, Berlin, pp. 650 (1998).
Timmerman, H., Meteorological effects on tidal heights in the North Sea, Koninklijk Nederlands Meteorological Institution, mededelingen en verhandelingen, No.99, pp. 105 (1977).
Torge, W., Geodesy, W. de Gruyter, Berlin, pp. 264 (1991).
Trenberth, K.E., and Hurrell, J.W., Comment on “The interpretation of short climate records with comments on the North Atlantic and Southern Oscillations,” Bulletin of the American Meteorological Society, Vol.80, pp.2721-2722 (1999).
Wagner, C.A., How well do we know the deep ocean tides: an intercomparision of altimeter, hydrodynamic and gauge data, Marine Geodesy, Vol. 16, pp. 118-140 (1991).
Wahr, J. and Molenaar, M., Time variability of the Earth’s gravity field: Hydrographical and oceanic effects and their possible detection using GRACE, Journal of Geophysical Research, Vol. 103, pp. 30205-30229 (1998).
Wallace, J.M. Zhang, Y., Lau, K.H., Structure and seasonality of interannual and interdecadal variability of geopotential height and temperature fields in the Northern Hemisphere troposphere, Journal of Climate, Vol. 6, pp. 2063-2082 (1993).
Weber, J. E., Steady wind- and wave-induced currents in the open ocean, Journal of Physical Oceanography, Vol. 13, pp. 524-530 (1983).
Wolter, K. and Timlin, M.S., Monitoring ENSO in COADS with a seasonally adjusted principal component index, Proc. of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Climatological Survey, CIMMS and the School of Meteorology, University of Oklahoma, pp. 52-57 (1993).
Wolter, K. and Timlin, M.S., Measuring the strength of ENSO events – how does 1997/98 rank? Weather, Vol. 53, pp.315-324 (1998).
Wu, C.R., Chang, Y.L., Oey, L.Y., Chang, C.W., and Hsin, Y.C., Air-sea interaction between tropical cyclone Nari and Kuroshio, Geophysical Research Letter, Vol. 35, L12605 (2008).
Wunsch, C., Bermuda sea level in relation to tides, weather and baroclinic fluctuations, Reviews of Geophysics. Space Phys., Vol.10, pp. 1-49 (1972).
Wunsch, C. and Gaposchkin, E. M., On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement, Reviews of Geophysics., Vol. 18, No. 4, pp. 725-745 (1980).
Zenner, L, Zeitliche schwerefeldvariationen aus GRACE und hydrologiemodellen, Diplomarbeit on TU München, Institut für Astronomische und Physikalische Geodäsie (2006).
Zhang, H.M., Bates, J.J. and Reynolds, R.W., Assessment of composite global sampling: Sea surface wind speed, Geophysical Research Letter, Vol. 33, L17714 (2006a).
Zhang, H.M., Reynolds, R.W. and Bates, J.J., Blended and gridded high resolution global sea surface wind speed and climatology from multiple satellites: 1987-present, American Meteorological Society 2006 Annual Meeting, Atlanta, GA. pp. 2.23 (2006b).