簡易檢索 / 詳目顯示

研究生: 陳彥樵
Chen, Yan-Chiao
論文名稱: 以質點網格法模擬電容耦合電漿在具有庫倫碰撞及二次電子發射下之行為
Particle-in-Cell Simulation of Capacitively Coupled Plasma in The Presence of Coulomb Collisions and Secondary Electron Emission
指導教授: 西村泰太郎
Nishimura Yasutaro
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 44
中文關鍵詞: 質點網格法電容耦合電漿庫倫碰撞交流電場
外文關鍵詞: Particle-in-Cell, capacitively coupled plasma, Coulomb collision, RF bias
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以質點網格法建構電漿在一維有限空間中的模型,研究電容耦合電漿中的二次電子效應。此模型可模擬電子在一維空間中的行為。首先,我們可在系統的粒子密度、電位及電場分布中,觀察到“電漿鞘”的現象。進一步,我們考慮由電子撞擊器壁產生的二次電子。“電漿鞘”的形成,與二次電子的行為極為相關。為了使二次電子效應更加貼近實際狀況,在模擬中我們同時考慮了粒子間的庫倫碰撞。電容耦合電漿被廣泛地利用在工業上的電漿製程中。因此,我們在模擬系統中加入交流電場,並且藉由粒子軌跡及系統能量的發展探究交流電場(造成粒子共振)的效應。

    A Particle-in-Cell method is built in one-dimensional electrostatic model to study effects of secondary electron emission (SEE) in capacitively coupled plasma (CCP). The model simulate the particles’ behavior in one-dimensional space bounded by two walls. The generation of “plasma sheath” is observed. Furthermore, secondary electron emission is incorporated which is produced by electrons’ bombardment. The formation of plasma sheath is closely related to the behavior of secondary electrons. To deal the SEE effect more realistically, the particles’ Coulomb collision effect is included into the simulation. We also employ radio-frequency (RF) electric field into the system as in CCP widely used in industrial processes. By following particles’ trajectories and energy development, effects of RF bias (which can then give rise to resonance between the bounce motion of particles) is examined.

    摘要 I Abstract II Chapter 1 Introduction 1 Chapter 2 Computational Model 3 2.1 One-Dimensional Electrostatic Model 3 2.2 Plasma Sheath 5 2.2.1 Concept of Plasma Sheath 5 2.2.2 Sheath Equation 6 2.3 Secondary Electron Emission 10 2.4 Coulomb Collision Model 11 2.5 Radio-Frequency (RF) Heating Plasma 15 Chapter 3 Particle-in-Cell Simulation 17 3.1 Principle and Process 17 3.2 Setting the Position and Velocity Domain 19 3.3 Particles’ Loading 20 3.4 Time Advancing Particle Position 22 3.4.1 Self-Consistent Particle Push 22 3.4.2 Particle Position Change Due to Secondary Electron Emission 23 3.5 Gathering Particles Density 24 3.6 Solving Poisson Equation 26 3.7 Self-Consistent Electric Field 27 3.8 Push Particle Velocity 28 3.8.1 Particles Velocity Change Due to Self-Consistent Electric Force 28 3.8.2 Particles Velocity Change Due to Coulomb Collisions 29 3.8.3 Particles Velocity Change Due to Radio-Frequency (RF) Electric field 30 Chapter 4 Simulation Results 31 4.1 Classic Sheath Formation 31 4.2 Sheath Behavior with Secondary Electron Emission 33 4.3 Particles’ Behavior in Collison Model 35 4.4 Plasma Heating with External Electric Field 36 Chapter 5 Summary and Future Work 41 Reference 43

    [1] M.D. Campanell, A.V.Khrabrov, and I.D.Kaganovich, “Absent of Debye
    Sheaths due to Secondary Electron Emission,” Physics Review Letters, vol 108,
    pp255001-1-255001-5, Jun. 2012

    [2] Lin Xu, L. Chen, M.Funk, A. Ranjan, M. Hummel, R. Bravenec, R.
    Sundararaajan, D.J. Economou, and V.M. Donnelly, “Diagnostics of ballistic
    electrons in a dc/rf hybrid capacitively coupled discharge”
    Applied Physics Letters, vol. 93, no. 26, pp.261502-1-261502-3, Feb.2008

    [3] Francis F.Chen “Introduction to Plasma Physics and Controlled Fusion,” Plenum,New York, p.290, 1984

    [4] K.Miyamoto , “Plasma Physics for Nuclear Fusion,” Kinger Publishing,Malabar
    and Florida, p.9, 1992

    [5] T.Takizuka and H.Abe, "A binary collision model for plasma simulation with
    a particle code", Journal of Computational Physics 25, 205 ,1977

    [6] M. Lieberman, A. Lichtenberg “ Principles of Plasma Discharges and Materials
    Processing,” Wiely Interscience , p.167 ,p.229, 1994

    [7] C. K. Birdsall and A. B. Langdon, “Plasma Physics via Computer Simulations,”
    McGraw-Hill Book Company, New York, p.56 , 1985

    [8] M.E.J. Newman and G.T. Barkema , “Monte Carlo Methods in Statistical
    Physics,” Springer,NewYork, p.388,p.399, 2010

    [9 ] Meijering, Erik , “A chronology of interpolation: from ancient astronomy to
    modern signal and image processing”, Proceedings of the IEEE,
    vol.90,10.1109/5.993400, p.319-342, Mar.2002

    [10] W.Cheney and D.Kincaid, “Numerical Mathematics and Computing” Cengage learning, p.480, 2012

    [11] M. Abramowitz and I.A. Stegun, “ Handbook of Mathematical Functions,” Dover, New York ,p.933, 1970

    [12] M. Lieberman and A. Lichtenberg, “Regular and Chaotic Dynamics” Springer,New York,p.565,1992

    [13] C.W.Huang, Y.C.Chen, and Y.Nishimura , “Particle-in-Cell simulation of plasma sheath dynamics with kinetic ions” IEEE Transactions on Plasma Science 42, 2014

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE