| 研究生: |
劉昱安 Liu, Yu-An |
|---|---|
| 論文名稱: |
探討非結構性蛋白1突變對登革熱病毒特性所造成之影響 The effect of genetic substitutions of nonstructural protein 1 on biological properties of dengue virus |
| 指導教授: |
王貞仁
Wang, Jen-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 登革熱病毒 、非結構蛋白 NS1 、突變 、疾病嚴重性 |
| 外文關鍵詞: | dengue virus, nonstructural protein 1, mutation, disease severity |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
登革病毒感染近年來在熱帶及亞熱帶地區成為一個日益嚴重的公共衛生問題。在台灣,2015年台南市及高雄市更是遭逢大規模的登革熱疫情,總共累積了43,784登革熱病例,其中包含674例發展成重症及224例死亡。死亡率高於往年流行疫情。因此,我們假設,有可能是在登革病毒基因組發生了和疾病嚴重性相關之突變,而導致2015的嚴重疫情。我們收集了在基因銀行(GenBank)上所有台灣的登革病毒第二型(Dengue virus type 2)序列(27株),並拿它們和先前我們實驗室從2015年爆發收集並定序了的病毒株進行比較。我們看到了在2015年的病毒株中總共有11個胺基酸被取代,其中包括膜蛋白上的K73R,非結構蛋白NS1的P73Q、H224N、K272R、D278,NS2A的S39T、T104、K166R、I171T,NS3的V395I以及NS5的K387R。而此研究則聚焦於NS1蛋白進行近一步的分析,探討NS1基因的突變是否會對蛋白質和登革病毒的生物學特性造成影響。我們利用點突變建構了帶有NS1突變的蛋白,並於293T細胞中進行表達。另外,我們也利用了反基因法(reverse genetics)建構了帶有NS1突變的登革病毒。結果中,我們發現NS1的突變雖不會影響到登革病毒NS1誘導的內皮通透性,但其增加了在哺乳動物細胞中的病毒生長。總之,本研究中我們看到了在登革病毒株發生了不同於以往的胺基酸取代,而其中在NS1上的突變可能在2015年疾病嚴重程度上扮演了部分角色作用。
Dengue virus (DENV) infection is an increasing problem in tropical and subtropical regions. In 2015, there was a large DENV-2 outbreak, which occurred in southern Taiwan, caused a total of 43,784 dengue fever (DF) cases, included 674 dengue hemorrhagic fever or dengue shock syndrome (DHF/DSS) cases with 224 deaths. A higher fatality was observed in the 2015 outbreak. We hypothesized that there may be mutations which occurred in the DENV viral genome that is associated with increased disease severity during the outbreak. Thus, we collected all Taiwan DENV-2 sequences (27 DENV-2 strains) in GenBank and compared them to the 22 samples we previously sequenced from the 2015 outbreak. A total of 11 amino acid substitutions were identified, which were located in the envelope protein (K73R), nonstructural proteins NS1 (P73Q, H224N, K272R, D278E), NS2A (S39T, T104A, K166R, I171T), NS3 (V395I) and NS5 (K387R). In this study, we focused on the NS1 protein gene for further analysis and examined whether these substitutions on NS1 gene affect biological properties of NS1 protein and DENV. By site-directed mutagenesis, we constructed four NS1 mutant plasmids and expressed in 293T cells. Also, viruses with NS1 substitutions were generated by reverse genetics system, and conducted further analysis. The results showed that these substitutions have no effect on the level of DENV NS1-induced endothelial hyperpermeability, which is one of the important characteristics of severe dengue. However, they increase the viral growth in BHK-21 cell line. In conclusion, consistent mutations were observed in 2015 outbreak, and these NS1 substitutions may play a role in DENV disease severity.
1 Gord Kuno, G.-J. J. C., K. Richard Tsuchiya, Nick Karabatsos, C. Bruce Cropp. Phylogeny of the Genus Flavivirus. Journal of Virology 72, 73-83 (1998).
2 Holbrook, M. R. Historical Perspectives on Flavivirus Research. Viruses 9, doi:10.3390/v9050097 (2017).
3 Gould, E. A. & Solomon, T. Pathogenic flaviviruses. The Lancet 371, 500-509, doi:10.1016/s0140-6736(08)60238-x (2008).
4 Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3, 13-22, doi:10.1038/nrmicro1067 (2005).
5 Back, A. T. & Lundkvist, A. Dengue viruses - an overview. Infect Ecol Epidemiol 3, doi:10.3402/iee.v3i0.19839 (2013).
6 Richard J. Kuhn, W. Z. M. G. R., Sergei V. Pletnev, Jeroen Corver, Edith Lenches, Christopher T. Jones, Suchetana Mukhopadhyay, Paul R. Chipman, Ellen G. Strauss, Timothy S. Baker, James H. Struss. Structure of Dengue Virus- Implications for Flavivirus Organization, Maturation, and Fusion.pdf. (2002).
7 Ng, W. C., Soto-Acosta, R., Bradrick, S. S., Garcia-Blanco, M. A. & Ooi, E. E. The 5' and 3' Untranslated Regions of the Flaviviral Genome. Viruses 9, doi:10.3390/v9060137 (2017).
8 Ma, L., Jones, C. T., Groesch, T. D., Kuhn, R. J. & Post, C. B. Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A 101, 3414-3419, doi:10.1073/pnas.0305892101 (2004).
9 Byk, L. A. & Gamarnik, A. V. Properties and Functions of the Dengue Virus Capsid Protein. Annual Review of Virology 3, 263-281, doi:10.1146/annurev-virology-110615-042334 (2016).
10 Samsa, M. M., Mondotte, J. A., Caramelo, J. J. & Gamarnik, A. V. Uncoupling cis-Acting RNA Elements from Coding Sequences Revealed a Requirement of the N-Terminal Region of Dengue Virus Capsid Protein in Virus Particle Formation. Journal of Virology 86, 1046-1058, doi:10.1128/jvi.05431-11 (2011).
11 Balinsky, C. A. et al. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J Virol 87, 13094-13106, doi:10.1128/JVI.00704-13 (2013).
12 Faustino, A. F. et al. Understanding Dengue Virus Capsid Protein Interaction with Key Biological Targets. Scientific Reports 5, doi:10.1038/srep10592 (2015).
13 Scaturro, P., Cortese, M., Chatel-Chaix, L., Fischl, W. & Bartenschlager, R. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins. PLoS Pathog 11, e1005277, doi:10.1371/journal.ppat.1005277 (2015).
14 Keelapang, P. et al. Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J Virol 78, 2367-2381, doi:10.1128/jvi.78.5.2367-2381.2004 (2004).
15 I-Mei Yu, W. Z., Heather A. Holdaway, Long Li, Victor A. Kostyuchenko, Paul R. Chipman, & Richard J. Kuhn, M. G. R., Jue Chen. Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation. Science 319, 1834-1837 (2008).
16 Zhang, X. et al. Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections. Viruses 9, doi:10.3390/v9110338 (2017).
17 Fritz, R. et al. The unique transmembrane hairpin of flavivirus fusion protein E is essential for membrane fusion. J Virol 85, 4377-4385, doi:10.1128/JVI.02458-10 (2011).
18 Langosch, D., Hofmann, M. & Ungermann, C. The role of transmembrane domains in membrane fusion. Cell Mol Life Sci 64, 850-864, doi:10.1007/s00018-007-6439-x (2007).
19 Xie, X., Gayen, S., Kang, C., Yuan, Z. & Shi, P. Y. Membrane topology and function of dengue virus NS2A protein. J Virol 87, 4609-4622, doi:10.1128/JVI.02424-12 (2013).
20 Leung, J. Y. et al. Role of Nonstructural Protein NS2A in Flavivirus Assembly. Journal of Virology 82, 4731-4741, doi:10.1128/jvi.00002-08 (2008).
21 Xie, X. et al. Two Distinct Sets of NS2A Molecules Are Responsible for Dengue Virus RNA Synthesis and Virion Assembly. Journal of Virology 89, 1298-1313, doi:10.1128/jvi.02882-14 (2015).
22 Wu, R. H., Tsai, M. H., Chao, D. Y. & Yueh, A. Scanning mutagenesis studies reveal a potential intramolecular interaction within the C-terminal half of dengue virus NS2A involved in viral RNA replication and virus assembly and secretion. J Virol 89, 4281-4295, doi:10.1128/JVI.03011-14 (2015).
23 Castillo Ramirez, J. A. & Urcuqui-Inchima, S. Dengue Virus Control of Type I IFN Responses: A History of Manipulation and Control. J Interferon Cytokine Res 35, 421-430, doi:10.1089/jir.2014.0129 (2015).
24 Li, Y., Li, Q., Wong, Y. L., Liew, L. S. Y. & Kang, C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, 2244-2252, doi:10.1016/j.bbamem.2015.06.010 (2015).
25 Haitao Li, S. C., Shihyun You, Kurt E. Ebner, R. Padmanabhan. The Serine Protease and RNA-Stimulated Nucleoside Triphosphatase and RNA Helicase Functional Domains of Dengue Virus Type 2 NS3 Converge within a Region of 20 Amino Acids. Journal of Virology 73, 3108-3116 (1999).
26 Sampath, A. et al. Structure-based mutational analysis of the NS3 helicase from dengue virus. J Virol 80, 6686-6690, doi:10.1128/JVI.02215-05 (2006).
27 Nemésio, H., Palomares-Jerez, F. & Villalaín, J. NS4A and NS4B proteins from dengue virus: Membranotropic regions. Biochimica et Biophysica Acta (BBA) - Biomembranes 1818, 2818-2830, doi:10.1016/j.bbamem.2012.06.022 (2012).
28 Brett D. Lindenbach, C. M. R. Genetic Interaction of Flavivirus Nonstructural Proteins NS1 and NS4A as a Determinant of Replicase Function. Journal of Virology 73, 4611-4621 (1999).
29 Zou, J. et al. Mapping the Interactions between the NS4B and NS3 proteins of dengue virus. J Virol 89, 3471-3483, doi:10.1128/JVI.03454-14 (2015).
30 Zhou, Y. et al. Structure and function of flavivirus NS5 methyltransferase. J Virol 81, 3891-3903, doi:10.1128/JVI.02704-06 (2007).
31 Kroschewski, H. et al. Mutagenesis of the Dengue Virus Type 2 NS5 Methyltransferase Domain. Journal of Biological Chemistry 283, 19410-19421, doi:10.1074/jbc.M800613200 (2008).
32 Hannemann, H. et al. Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization. J Biol Chem 288, 22621-22635, doi:10.1074/jbc.M113.481382 (2013).
33 Marie Flamand, F. M., Magali Mathieu, Jean Lepault, Felix A. Rey, Vincent Deubel. Dengue Virus Type 1 Nonstructural Glycoprotein NS1 Is Secreted from Mammalian Cells as a Soluble Hexamer in a Glycosylation-Dependent Fashion. 73, 6104-6110 (1999).
34 Song, H., Qi, J., Haywood, J., Shi, Y. & Gao, G. F. Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nature Structural & Molecular Biology 23, 456-458, doi:10.1038/nsmb.3213 (2016).
35 Rastogi, M., Sharma, N. & Singh, S. K. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 13, 131, doi:10.1186/s12985-016-0590-7 (2016).
36 David L. Akey, W. C. B., Somnath Dutta, Jamie Konwerski, Joyce Jose, Thomas J. Jurkiw, James DelProposto, Craig M. Ogata, Georgios Skiniotis, Richard J. Kuhn, Janet L. Smith. Flavivirus NS1 Structures Reveal Surfaces for Associations with Membranes and the Immune System. Science 343, 881-885, doi:0.1126/science.1247749 (2014).
37 Jingjing Fan, Y. L., , Zhiming Yuan. Critical role of Dengue Virus NS1 protein in viral replication. VIROLOGICA SINICA 29, 162-169 (2004).
38 Avirutnan, P. et al. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med 207, 793-806, doi:10.1084/jem.20092545 (2010).
39 Avirutnan, P. et al. Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J Immunol 187, 424-433, doi:10.4049/jimmunol.1100750 (2011).
40 Chuang, Y. C., Lin, J., Lin, Y. S., Wang, S. & Yeh, T. M. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. J Immunol 196, 1218-1226, doi:10.4049/jimmunol.1500057 (2016).
41 Daniel H. Libraty, P. R. Y., 5 Darren Pickering, Timothy P. Endy, Siripen Kalayanarooj, Sharone Green, David W. Vaughn, Ananda Nisalak, Francis A. Ennis, Alan L. Rothman. High Circulating Levels of the Dengue Virus Nonstructural Protein NS1 Early in Dengue Illness Correlate with the Development of Dengue Hemorrhagic Fever. The Journal of Infectious Diseases 186 (2002).
42 Avirutnan, P. et al. Secreted NS1 of Dengue Virus Attaches to the Surface of Cells via Interactions with Heparan Sulfate and Chondroitin Sulfate E. PLoS Pathogens 3, doi:10.1371/journal.ppat.0030183 (2007).
43 Puerta-Guardo, H., Glasner, D. R. & Harris, E. Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog 12, e1005738, doi:10.1371/journal.ppat.1005738 (2016).
44 Glasner, D. R. et al. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog 13, e1006673, doi:10.1371/journal.ppat.1006673 (2017).
45 Chen, H. R. et al. Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis 10, e0004828, doi:10.1371/journal.pntd.0004828 (2016).
46 Chen, J., Ng, M. M. & Chu, J. J. Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection. PLoS Pathog 11, e1005053, doi:10.1371/journal.ppat.1005053 (2015).
47 Rothman, A. L. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nature Reviews Immunology 11, 532-543, doi:10.1038/nri3014 (2011).
48 Fernandez-Sesma, A. et al. Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLOS Pathogens 14, doi:10.1371/journal.ppat.1007033 (2018).
49 Naphak Modhiran, D. W., David A. Muller, Adele K. Panetta, David P. Sester, Lidong Liu, David A. Hume, Katryn J. Stacey, Paul R. Young. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 107, doi:10.1126/scitranslmed.aaa3863 (2015).
50 Puerta-Guardo, H. et al. Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Rep 26, 1598-1613 e1598, doi:10.1016/j.celrep.2019.01.036 (2019).
51 Wang, C. et al. Endocytosis of flavivirus NS1 is required for NS1-mediated endothelial hyperpermeability and is abolished by a single N-glycosylation site mutation. PLoS Pathog 15, e1007938, doi:10.1371/journal.ppat.1007938 (2019).
52 Domingo, E. Rapid Evolution of Viral RNA Genomes. J Nutr. 127, 958S-961S, doi:10.1093/jn/127.5.958S (1997).
53 Schnell, M. J. et al. Nature and Extent of Genetic Diversity of Dengue Viruses Determined by 454 Pyrosequencing. Plos One 10, doi:10.1371/journal.pone.0142473 (2015).
54 Rodriguez-Roche, R. et al. Virus Role During Intraepidemic Increase in Dengue Disease Severity. Vector-Borne and Zoonotic Diseases 11, 675-681, doi:10.1089/vbz.2010.0177 (2011).
55 Rodriguez-Roche, R. et al. Virus evolution during a severe dengue epidemic in Cuba, 1997. Virology 334, 154-159, doi:10.1016/j.virol.2005.01.037 (2005).
56 Zhang, H. et al. Spatiotemporal characterizations of dengue virus in mainland China: insights into the whole genome from 1978 to 2011. PLoS One 9, e87630, doi:10.1371/journal.pone.0087630 (2014).
57 Delatorre, E., Mir, D. & Bello, G. Tracing the origin of the NS1 A188V substitution responsible for recent enhancement of Zika virus Asian genotype infectivity. Memórias do Instituto Oswaldo Cruz 112, 793-795, doi:10.1590/0074-02760170299 (2017).
58 Liu, Y. et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 545, 482-486, doi:10.1038/nature22365 (2017).
59 Xia, H. et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nature Communications 9, doi:10.1038/s41467-017-02816-2 (2018).
60 Kitti Wing Ki Chan, S. W., Jocelyn Y. Jin, Julien Pompon, Don Teng, Sylvie Alonso, Dhanasekaran Vijaykrishna, Scott B. Halstead, Jan K. Marzinek, Peter J. Bond, Bo Burla8, Federico Torta, Markus R. Wenk, Eng Eong Ooi, Subhash G. Vasudevan. T164S mutation in the dengue virus NS1 protein is associated with greater disease severity in mice. Sci. Transl. Med 11 (2019).
61 Wong, S.-S., Abd-Jamil, J. & Abubakar, S. Antibody Neutralization and Viral Virulence in Recurring Dengue Virus Type 2 Outbreaks. Viral Immunology 20, 359-368, doi:10.1089/vim.2006.0100 (2007).
62 Hadinegoro, S. R. The revised WHO dengue case classification: does the system need to be modified? Paediatr Int Child Health 32 Suppl 1, 33-38, doi:10.1179/2046904712Z.00000000052 (2012).
63 WHO. Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Feve. (2011).
64 Ponlawat A, H. L. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. (2005).
65 Carrington, L. B. & Simmons, C. P. Human to mosquito transmission of dengue viruses. Front Immunol 5, 290, doi:10.3389/fimmu.2014.00290 (2014).
66 Ferreira-de-Lima, V. H. & Lima-Camara, T. N. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review. Parasit Vectors 11, 77, doi:10.1186/s13071-018-2643-9 (2018).
67 Martina, B. E., Koraka, P. & Osterhaus, A. D. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22, 564-581, doi:10.1128/CMR.00035-09 (2009).
68 Wan, S. W. et al. Autoimmunity in dengue pathogenesis. J Formos Med Assoc 112, 3-11, doi:10.1016/j.jfma.2012.11.006 (2013).
69 Filomatori, C. V. et al. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. PLoS Pathog 13, e1006265, doi:10.1371/journal.ppat.1006265 (2017).
70 Behura, S. K. & Severson, D. W. Nucleotide substitutions in dengue virus serotypes from Asian and American countries: insights into intracodon recombination and purifying selection. BMC Microbiol 13, 37, doi:10.1186/1471-2180-13-37 (2013).
71 Rebeca Rico-Hesse, L. M. H., Rosa Alba Salas, Duilia Tovar, Ananda Nisalak, Celso Ramos, Jorge Boshell, Maria Teresa R. de Mesa, Rita M. R. Nogueira, and Ame´ lia Travassos da Rosa. Origins of Dengue Type 2 Viruses Associated with Increased Pathogenicity in the Americas. VIROLOGY 230, 244-251 (1997).
72 Guzman, A. & Isturiz, R. E. Update on the global spread of dengue. Int J Antimicrob Agents 36 Suppl 1, S40-42, doi:10.1016/j.ijantimicag.2010.06.018 (2010).
73 David W. Vaughn, S. G., Siripen Kalayanarooj, Bruce L. Innis, Suchitra Nimmannitya, Saroj Suntayakorn, Timothy P. Endy, Boonyos Raengsakulrach, Alan L. Rothman, Francis A. Ennis, and Ananda Nisalak. Dengue Viremia Titer, Antibody Response Pattern, and Virus Serotype Correlate with Disease Severity. The Journal of Infectious Diseases 181, 2-9 (2000).
74 Halstead, S. B. Pathogenesis of Dengue: Dawn of a New Era. F1000Res 4, doi:10.12688/f1000research.7024.1 (2015).
75 Leah C. Katzelnick, L. G., M. Elizabeth Halloran, Juan Carlos Mercado, Guillermina Kuan, Aubree Gordon, Angel Balmaseda, Eva Harris. Antibody-dependent enhancement of severe dengue disease in humans. Science (2017).
76 Halstead, S. B. Dengue Antibody-Dependent Enhancement: Knowns and Unknowns. Microbiol Spectr 2, doi:10.1128/microbiolspec.AID-0022-2014 (2014).
77 Screaton, G., Mongkolsapaya, J., Yacoub, S. & Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15, 745-759, doi:10.1038/nri3916 (2015).
78 Diamond, M. S. & Pierson, T. C. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell 162, 488-492, doi:10.1016/j.cell.2015.07.005 (2015).
79 Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504-507, doi:10.1038/nature12060 (2013).
80 Wei, K. & Li, Y. Global evolutionary history and spatio-temporal dynamics of dengue virus type 2. Sci Rep 7, 45505, doi:10.1038/srep45505 (2017).
81 Messina, J. P. et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol 22, 138-146, doi:10.1016/j.tim.2013.12.011 (2014).
82 Wei, K. & Li, Y. Global evolutionary history and spatio-temporal dynamics of dengue virus type 2. Scientific Reports 7, doi:10.1038/srep45505 (2017).
83 Wang, S. F. et al. Severe Dengue Fever Outbreak in Taiwan. Am J Trop Med Hyg 94, 193-197, doi:10.4269/ajtmh.15-0422 (2016).
84 Chen, W.-J. Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis. Biomedical Journal 41, 283-289, doi:10.1016/j.bj.2018.06.002 (2018).
85 Chen, H.-R. & Yeh, T.-M. In vitro Assays for Measuring Endothelial Permeability by Transwells and Electrical Impedance Systems. Bio-Protocol 7, doi:10.21769/BioProtoc.2273 (2017).
86 Glasner, D. R. e. a. The Good, the Bad, and the Shocking--The Multiple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis. Annu Rev Virol 5, 227-253, doi:10.1146/annurev- (2018).
87 Malavige, G. N. & Ogg, G. S. Pathogenesis of vascular leak in dengue virus infection. Immunology 151, 261-269, doi:10.1111/imm.12748 (2017).
88 Wang, S. F. et al. Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg Microbes Infect 5, e123, doi:10.1038/emi.2016.124 (2016).
89 Liu, J. et al. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nat Microbiol 1, 16087, doi:10.1038/nmicrobiol.2016.87 (2016).
90 Mangada, M. M., H.; Carmen Castillo, L.; Hasebe F.; Igarashi, A. . Effect of incubation temperature on Dengue-2 viral antigen production and viral RNA synthesis in infected Aedes albopictus clone C6/36 cell line. Tiss. Cult. Res. Commun. 14, 213-220 (1995).
91 Siraj, A. S. et al. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Negl Trop Dis 11, e0005797, doi:10.1371/journal.pntd.0005797 (2017).
92 Liu, Z. et al. Temperature Increase Enhances Aedes albopictus Competence to Transmit Dengue Virus. Frontiers in Microbiology 8, doi:10.3389/fmicb.2017.02337 (2017).
93 Slon Campos, J. L. et al. Temperature-dependent folding allows stable dimerization of secretory and virus-associated E proteins of Dengue and Zika viruses in mammalian cells. Sci Rep 7, 966, doi:10.1038/s41598-017-01097-5 (2017).
94 Jenkins, G. M., Rambaut, A., Pybus, O. G. & Holmes, E. C. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54, 156-165, doi:10.1007/s00239-001-0064-3 (2002).
95 Christopher H. Woelk, E. C. H. Reduced Positive Selection in Vector-Borne RNA Viruses. Mol. Biol. Evol. 19, 2333-2336 (2002).
96 Coffey, L. L., Forrester, N., Tsetsarkin, K., Vasilakis, N. & Weaver, S. C. Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiol 8, 155-176, doi:10.2217/fmb.12.139 (2013).
97 Ben-Shachar, R. & Koelle, K. Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context. Nature Communications 9, doi:10.1038/s41467-018-04595-w (2018).
校內:2024-10-08公開