簡易檢索 / 詳目顯示

研究生: 王筠潔
Wang, Yun-Chieh
論文名稱: 合成錳矽酸鹽孔洞材料應用於臭氧分解之研究
Synthesis of Mesoporous Manganese-Silicate for Ozone Removal Applications
指導教授: 孫亦文
Sun, I-Wen
共同指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 64
中文關鍵詞: metal-silicate材料氧化矽剝蝕法共沉降法臭氧催化反應
外文關鍵詞: porous material, metal silicate, silicate-exfoliation, co-precipitation, ozone
相關次數: 點閱:133下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據世界衛生組織的報告,表示每日8小時接觸臭氧濃度平均值只要達到50 ppb就會提高1-2%死亡率,且長時間待在臭氧濃度超過60 ppb的環境時,就會破壞人體、動物和植物的黏膜組織和呼吸系統1。有鑑於此,各國科學家迫切開發相關材料,於一般環境下使臭氧達到分解效果。
    本研究中,致力於合成manganese-silicate材料,應用於催化臭氧分解而形成氧氣。採用兩種合成方法製備金屬錳複合材料,分別為氧化矽剝蝕法及共沉降法。在氧化矽剝蝕法中,透過調整實驗反應條件,例如:Mn/Si莫耳比例、前驅物MnCO3之沉降溫度、反應水熱溫度及水熱時間合成manganese-silicate材料。在適當的反應條件下,前驅物MnCO3與矽酸鹽之間的作用力及拆解能力會較良好。接著,以數種儀器鑑定材料性質,同時期望能以儀器鑑定判別反應是否仍有前驅物殘留,藉由簡易的儀器鑑定作為剝蝕效果之指標。最後,分別於水熱70°C、85°C及100℃做manganese-silicate材料生成動力學的探討,如此,未來在實際運用上,能將氧化錳催化中心效用達最大化。
    透過Infrared spectroscopy (IR)得知,若沒有足夠的水熱溫度及時間,會有前驅物MnCO3殘留而導致反應不完全,因此,另一合成方法為共沉降法,能改善前驅物之沉澱聚集現象,但是合成手法繁瑣,考慮到放大製程行之有礙,因此應用共沉降法簡化其步驟,合成出manganese-silicate材料有結構緊密且明顯有較完整片狀的孔洞材料。接著,加入矽藻土增加放大製程量產過程中其前驅物分散性,並作為助濾劑,藉由矽藻土的特性,低密度堆積及高吸收能力,可增加manganese-silicate材料在作為催化臭氧的材料通透性。因此,添加適量矽藻土調整Mn/Si莫耳比例、水熱及鍛燒,合成出manganese-silicate材料並造粒後,測試催化臭氧分解之效果。
    由於台灣氣候潮濕,相對溼度動輒超過70-80%RH,manganese-silicate材料於低濕度環境下有較好的催化臭氧分解之效能,且經分解測試後,manganese-silicate材料易吸水的緣故,還須經高溫去除水份,得以重新做分解臭氧催化測試,因此,嘗試加入不同具有與臭氧反應的組成,應用較為簡易的共沉降法,結合manganese-silicate的複合材料,並分別造粒烘乾後直接充填於反應器內做催化臭氧分解效能之測試。

    Ozone pollution represents a major challenge to improving the air quality of indoor environments. It originates mainly from outdoor atmospheric ozone and indoor emissions from household appliances such as laser printers, photocopiers, air purifiers, and so on. According to medical reports, ozone pollution may cause various health issues, including respiratory disease, cardiovascular disease, and even premature mortality. As a result, effective methods for reducing ozone pollution are urgently required. The feasibility of performing the catalytic decomposition of O3 to O2 under ambient conditions has attracted extensive interest in the literature owing to its rapid conversion rate. In the present study, two facile methods were employed for the preparation of mesoporous manganese–silicate for catalyzing the decomposition process, namely silicate-exfoliation and co-precipitation. In the first method, the completeness of the silicate-exfoliation reaction was judged by the presence of a vibration band at approximately 1440 cm-1 (CO32- ligand) in the infrared (IR) spectra of the manganese–silicate composites. Given a hydrothermal processing temperature of 85℃, the reaction process required approximately 55 hours to complete. However, given a higher temperature of 100℃, the reaction was completed in just 24 hours. In the co-precipitation method, the reaction process was simplified by adding the sodium silicate to the reaction solution first and then adjusting the pH to 9; thereby preventing the accumulation of manganese ions through a self-precipitation effect. The decomposition test results showed that, by using a Mn/Si molar ratio of 0.25, a hydrothermal processing temperature of 100℃and a processing time of 24 hours, the mesoporous manganese–silicate powder could be granulated into millimeter-sized particles without the need for calcination. The experimental results showed that the granulated manganese–silicate powder was capable of decomposing ozone 0.177 g-O3/g-manganese–silicate in 742 minutes.

    摘要 I 致謝 VI 目錄 VII 圖目錄 X 圖目錄 XI 第一章 緒論 1 1.1 金屬矽酸鹽孔洞材料之研究動機與目的 1 1.2 中孔洞材料 1 1.2.1 中孔洞材料介紹 1 1.2.2 中孔洞材料主要的研究範疇 2 1.3 矽酸鹽的化學概念 4 1.4 結合金屬氧化物之中孔洞氧化矽複合材料 6 1.4.1 結合金屬氧化物複合材料的合成方法 6 1.5 頁矽酸鹽(phyllosilicates)的簡介 7 1.6 臭氧的基本性質 9 第二章 實驗部分 11 2.1 化學藥品 11 2.2 實驗步驟及流程示意圖 12 2.2.1 以氧化矽剝蝕法製備manganese-silicate孔洞材料 12 2.2.2 簡化共沉降法製備manganese-silicate孔洞材料並放大製程 13 2.2.3 以共沉降法製備manganese-silicate孔洞材料 14 2.3 儀器鑑定分析 15 2.3.1 傅立葉轉換紅外光譜(Fourier Transform Infrared Spectroscopy;FTIR)15 2.3.2 穿透式電子顯微鏡(Transmission Electron Microscopy;TEM)16 2.3.3 氮氣等溫吸附/脫附測量(N2 Adsorption/Desorption Isotherm)17 2.3.4 X-射線粉末繞射光譜(Powder X-Ray Diffraction;PXRD)22 2.3.5 熱重分析儀(Thermogravimetry Analysis;TGA)24 第三章 合成Manganese-silicate孔洞材料 25 3.1 以氧化矽剝蝕法合成manganese-silicate孔洞材料 25 3.1.1 研究動機與目的 25 3.1.2 Mn/Si莫耳比例對產物的影響 26 3.1.3 選擇MnCO3的沉降溫度 32 3.1.4 探討水熱溫度與時間的影響 35 3.1.5 以Infrared spectroscopy檢驗反應是否完全並推測其反應機制 40 3.2 應用共沉降法合成manganese-silicate孔洞材料並放大製程 42 3.2.1 研究動機與目的 42 3.2.2 簡化共沉降法步驟對產物的影響 42 3.2.3 簡化後共沉降法其水熱與否對於外觀構型之影響 44 3.2.4 反應機構的推測 44 第四章 應用共沉降法放大製程並測試臭氧之催化結果 45 4.1 加入矽藻土於manganese-silicate材料放大製程中及造粒應用 45 4.2 水熱及鍛燒對造粒後manganese-silicate催化效果之影響 47 4.3 改變Mn/Si莫耳比例對催化效果之影響 50 4.4 簡化實驗參數及步驟對催化效果的影響 52 第五章 其它金屬複合材料造粒後測試臭氧分解之催化結果 53 5.1 研究動機與目的 53 5.2 加入C元素合成Mn複合材料 53 5.2.1 富氧碳材介紹 53 5.2.2 C-Mn複合材料 54 一、應用共沉澱法合成manganese-silicate後加入富氧炭 54 二、於Mn2+(aq)加入富氧炭 56 三、於MnCO3/Mn(OH)2加入富氧炭 58 第六章 結論 59 參考文獻 61

    1. Balmes, J. R., EPA's New Ozone Air Quality Standard: Why Should We Care? Annals of the American Thoracic Society 2017, 14 (11), 1627-1629.
    2. Lee, B.-J.; Kim, B.; Lee, K., Air pollution exposure and cardiovascular disease. Toxicol Res 2014, 30 (2), 71-75.
    3. Brook, R. D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S. C.; Tager, I.; Expert Panel on, P.; Prevention Science of the American Heart, A., Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 2004, 109 (21), 2655-2671.
    4. Hao, J.; Zhu, T.; Fan, X., Indoor Air Pollution and Its Control in China. Indoor Air Pollution 2014, 64, 145-170.
    5. Ren, X.; Lv, Q.; Liu, L.; Liu, B.; Wang, Y.; Liu, A.; Wu, G., Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy & Fuels 2020, 4 (1), 15-30.
    6. Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G., Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catalysis 2017, 7 (10), 6493-6513.
    7. Wang, Z.; Wang, L., Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting. EcoMat 2021, 3 (1), e12075.
    8. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712.
    9. Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D., Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties. Angewandte Chemie International Edition 2003, 42 (27), 3146-3150.
    10. 陳運穎, Synthesis and Application of Porous Metal-Silicate. 2014.
    11. Alfredsson, V.; Anderson, M. W., Structure of MCM-48 Revealed by Transmission Electron Microscopy. Chemistry of Materials 1996, 8 (5), 1141-1146.
    12. Desai, S. K.; Neurock, M.; Kourtakis, K., A Periodic Density Functional Theory Study of the Dehydrogenation of Methanol over Pt(111). The Journal of Physical Chemistry B 2002, 106 (10), 2559-2568.
    13. Bhaumik, A.; Inagaki, S., Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. Journal of the American Chemical Society 2001, 123 (4), 691-6.
    14. Yokoi, T.; Yoshitake, H.; Tatsumi, T., Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. Journal of Materials Chemistry 2004, 14 (6), 951-957.
    15. Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; Xu, H., Large oriented arrays and continuous films of TiO(2)-based nanotubes. Journal of the American Chemical Society 2003, 125 (41), 12384-5.
    16. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y., Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads. Advanced Materials 2000, 12 (3), 206-209.
    17. Jiang, P.; Bertone, J. F.; Colvin, V. L., A lost-wax approach to monodisperse colloids and their crystals. Science (New York, N.Y.) 2001, 291 (5503), 453-7.
    18. Fowler, C. E.; Khushalani, D.; Mann, S., Interfacial synthesis of hollow microspheres of mesostructured silica. Chemical Communications 2001, (19), 2028-2029.
    19. Luo, Q.; Li, L.; Xue, Z.; Zhao, D., Synthesis of Nanometer-sized Mesoporous Silica and Alumina Spheres. In Studies in Surface Science and Catalysis, Sayari, A.; Jaroniec, M., Eds. Elsevier: 2000; Vol. 129, pp 37-43.
    20. Lin, H. P.; Mou, C. Y., Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc Chem Res 2002, 35 (11), 927-35.
    21. Brinker, C. J.; Scherer, G. W., Sol → gel → glass: I. Gelation and gel structure. Journal of Non-Crystalline Solids 1985, 70 (3), 301-322.
    22. Sheldon, R. A.; Wallau, M.; Arends, I. W. C. E.; Schuchardt, U., Heterogeneous Catalysts for Liquid-Phase Oxidations:  Philosophers' Stones or Trojan Horses? Accounts of Chemical Research 1998, 31 (8), 485-493.
    23. Murugavel, R.; Roesky, H. W., Titanosilicates: Recent Developments in Synthesis and Use as Oxidation Catalysts. Angewandte Chemie International Edition in English 1997, 36 (5), 477-479.
    24. Clerici, M. G.; Bellussi, G.; Romano, U., Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. Journal of Catalysis 1991, 129 (1), 159-167.
    25. Corma, A.; Fornes, V.; Navarro, M. T.; Perezpariente, J., Acidity and Stability of MCM-41 Crystalline Aluminosilicates. Journal of Catalysis 1994, 148 (2), 569-574.
    26. Alba, M. D.; Luan, Z.; Klinowski, J., Titanosilicate Mesoporous Molecular Sieve MCM-41:  Synthesis and Characterization. The Journal of Physical Chemistry 1996, 100 (6), 2178-2182.
    27. Mokaya, R.; Jones, W., Direct Synthesis of Acidic Aluminosilicate Mesoporous Molecular Sieves. MRS Online Proceedings Library 1996, 431 (1), 83-88.
    28. Newalkar, B. L.; Olanrewaju, J.; Komarneni, S., Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwave−Hydrothermal Conditions. Chemistry of Materials 2001, 13 (2), 552-557.
    29. Rolison, D. R., Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity. Science (New York, N.Y.) 2003, 299 (5613), 1698-701.
    30. C, G.; Araújo, D.; Silva, J.; Macedo, J.; Ghesti, G.; Dias, S.; Dias, J.; Da Rocha Filho, G., Effect of Cerium Loading on Structure and Morphology of Modified Ce-USY Zeolites. Journal of the Brazilian Chemical Society 2011, 22, 1894-1902.
    31. Plabst, M.; McCusker, L. B.; Bein, T., Exceptional ion-exchange selectivity in a flexible open framework lanthanum(III)tetrakisphosphonate. Journal of the American Chemical Society 2009, 131 (50), 18112-18118.
    32. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis 1989, 115 (2), 301-309.
    33. Burattin, P.; Che, M.; Louis, C., Molecular Approach to the Mechanism of Deposition−Precipitation of the Ni(II) Phase on Silica. The Journal of Physical Chemistry B 1998, 102 (15), 2722-2732.
    34. Marchand, P.; Hassan, I. A.; Parkin, I. P.; Carmalt, C. J., Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Transactions 2013, 42 (26), 9406-9422.
    35. Kocar, B. D.; Fendorf, S., Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Environmental science & technology 2009, 43 (13), 4871-7.
    36. E. P. Giannelis, R. K., E. Manias, Polymer-Silicate Nanocomposites: Model Systems
    for Confined Polymers and Polymer Brushes. 1999.
    37. Mohamed, M. A.; Jaafar, J.; Ismail, A. F.; Othman, M. H. D.; Rahman, M. A., Chapter 1 - Fourier Transform Infrared (FTIR) Spectroscopy. In Membrane Characterization, Hilal, N.; Ismail, A. F.; Matsuura, T.; Oatley-Radcliffe, D., Eds. Elsevier: 2017; pp 3-29.
    38. Inkson, B. J., Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. 2016; pp 17-43.
    39. <ASAP_2020_Brochure_3.pdf>.
    40. Donohue, M. D.; Aranovich, G. L., Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science 1998, 76-77, 137-152.
    41. 潘正邦, Synthesis of Multiporous Carbons Using Water-Chestnut-Shell Biochar for Applications in Supercapacitors, Capacitive Deionization and Oxygen Reduction Reaction. 2020.
    42. Wang, M.; Zhang, P.; Li, J.; Jiang, C., The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon. Chinese Journal of Catalysis 2014, 35, 335–341.
    43. Chandra Babu, D. B.; Rao, B.; Muchakayala, R.; Babu, S., Structural, microstructural, optical, and dielectric properties of Mn2+: Willemite Zn2SiO4 nanocomposites obtained by a sol-gel method. Journal of Molecular Structure 2016, 1127.
    44. Pauling, L., THE STRUCTURE OF THE CHLORITES. Proc Natl Acad Sci U S A 1930, 16 (9), 578-582.
    45. Vassileva, P. S.; Apostolova, M. S.; Detcheva, A. K.; Ivanova, E. H., Bulgarian natural diatomites: modification and characterization. Chemical Papers 2013, 67 (3), 342-349.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE