簡易檢索 / 詳目顯示

研究生: 徐英展
Hsu, Yin-zhan
論文名稱: 抗登革病毒外套膜蛋白及前趨膜蛋白抗體對血小板及 血管內皮細胞的交叉反應及所造成的傷害
Anti-dengue E/prM antibodies cross-react with platelet/endothelial cell and cause their damage
指導教授: 黎煥耀
Lei, Huan-yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 43
中文關鍵詞: 血小板減少自體抗體交叉反應性血漿滲出出血
外文關鍵詞: thrombocytopenia, autoantibody, cross-reactivity, plasma leakage, hemorrhage
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒(DV)是廣泛流行在熱帶及副熱帶區域的重大傳染性致病原,登革病毒感染病人依照症狀嚴重程度可以分三大類:登革熱(DF)、登革出血熱(DHF)及登革出血休克症候群(DSS)。DHF/DSS病人常發生在二次感染不同血清型登革病毒狀況下,而這些病人最大的病理特徵是血管通透性(vascular permeability)增加所導致的血漿滲出(plasma leakage)/出血(hemorrhage)以及血小板減少(thrombocytopenia)。在這些DHF/DSS病人中,免疫系統已經被發現參與登革熱的致病機制:免疫致病機轉(immunopathogenesis)理論提出病人體內產生的自體抗體(autoantibody)在疾病發展過程中,扮演了相當重要的角色,因為分子模擬性(molecular mimicry)與交叉反應性(cross-reactivity),這些抗體可以與自體抗原(autoantigen)結合,並藉由免疫系統的作用,導致自體細胞的破壞。我們利用抗前趨膜/抗外套膜單株抗體(anti-prM/anti-E mAbs)可以跟大鼠的肝、腎組織的血管內皮細胞產生交叉結合反應(cross-reaction),探討這些有交叉反應抗登革病毒抗體的病理角色。將這些抗體以靜脈注射方式處理大鼠,我們觀察到抗體可以結合到血管內皮細胞上,並且會滲透到組織中。這暗示當抗體結合到內皮細胞後,可能會增加內皮細胞的通透性。此外,施打會與大鼠血小板結合的抗體後,我們觀察到血小板有減少的現象。由這些結果,我們推論在活體動物內,抗登革病毒且具交叉反應的自體抗體與自體抗原的結合,會導致細胞功能的失常或破壞。

    Dengue virus is an important pathogen that causes endemic disease in tropic and sub-tropic area in the world. According to the symptom, dengue disease can range from mild dengue fever (DF) to severe dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS). DHF/DSS patients are often found in secondary infection with different serotypes of dengue virus. The major characteristics of DHF/DSS are plasma leakage and thrombocytopenia. Immunopathogenesis has been proposed to be involved in the pathogenesis of dengue disease and autoantibodies play important roles in the DHF/DSS. Due to the molecular mimicry and cross-reactivity, these anti-dengue antibodies can cross-react to autoantigen and cause target cells damage by immune system. In our study, we found that some anti-DV monoclonal antibodies can cross-react with endothelial cell in rat liver and kidney tissue sections. These antibodies bind to endothelial cells and leak into interstitial tissue after intravenous administration into rat. The antibodies bound to endothelial cells may induce vascular permeability change. Using the antibody cross-reactive to platelets, the circulating platelet counts were decreased after infusion into the rat. We conclude that the anti-dengue antibodies that cross-react to autoantigen will cause target cell to damage or function loss.

    中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 總目錄 Ⅴ 表目錄 Ⅶ 圖目錄 Ⅷ 附件目錄 Ⅸ 縮寫索引表 Ⅹ 研究源起與目的 1 材料與方法 8 A. 材料 8 1. 實驗動物 8 2. 細胞株 8 3. 抗體 8 4. 試劑 9 5. 塑膠、玻璃製品 13 6. 儀器 14 B. 方法 15 1. 從小鼠腹水純化抗體 15 2. 大鼠週邊白血球分離製備 16 3. 血小板抗原製備、抗體染色與螢光標定 16 4. 冷凍組織製備 17 5. 免疫組織化學染色法 17 6. 免疫組織螢光染色法 17 7. 大鼠血小板數量變化檢驗 17 結果 19 1. 抗登革病毒抗體可以結合到大鼠血管內皮細胞並引起血管內皮細胞通透性改變 19 2. 抗登革病毒抗體可以結合到大鼠血小板及引起血小板減少的現象 21 討論 22 參考文獻 26 表附錄 32 圖附錄 33 附件 41 作者 43

    Anonymous. (1997) Dengue haemorrhagic fever diagnosis, treatment, prevention and
    control. World Health Organization, Geneva

    Allison, S.L., Stadler, K., Mandl, C.W., Kunz, C., and Heinz, F.X. (1995). Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J Virol 69, 5816-5820.

    Anderson, R., Wang, S., Osiowy, C., and Issekutz, A.C. (1997). Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol 71, 4226-4232.

    Benarroch, D., Egloff, M.P., Mulard, L., Guerreiro, C., Romette, J.L., and Canard, B. (2004a). A structural basis for the inhibition of the NS5 dengue virus mRNA 2'-O-methyltransferase domain by ribavirin 5'-triphosphate. J Biol Chem 279, 35638-35643.

    Benarroch, D., Selisko, B., Locatelli, G.A., Maga, G., Romette, J.L., and Canard, B. (2004b). The RNA helicase, nucleotide 5'-triphosphatase, and RNA 5'-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208-218.

    Bente, D.A., Melkus, M.W., Garcia, J.V., and Rico-Hesse, R. (2005). Dengue fever in humanized NOD/SCID mice. J Virol 79, 13797-13799.

    Bente, D.A., and Rico-Hesse, R. (2006). Models of dengue virus infection. Drug Discov Today Dis Models 3, 97-103.

    Bhamarapravati, N. (1989). Hemostatic defects in dengue hemorrhagic fever. Rev Infect Dis 11 Suppl 4, S826-829.

    Cardier, J.E., Marino, E., Romano, E., Taylor, P., Liprandi, F., Bosch, N., and Rothman, A.L. (2005). Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: possible role of TNF-alpha in endothelial cell damage in dengue. Cytokine 30, 359-365.

    Chen, H.C., Hofman, F.M., Kung, J.T., Lin, Y.D., and Wu-Hsieh, B.A. (2007). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol 81, 5518-5526.

    Chen, S.T., Lin, Y.L., Huang, M.T., Wu, M.F., Cheng, S.C., Lei, H.Y., Lee, C.K., Chiou, T.W., Wong, C.H., and Hsieh, S.L. (2008). CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453, 672-676.

    Dewi, B.E., Takasaki, T., and Kurane, I. (2008). Peripheral blood mononuclear cells increase the permeability of dengue virus-infected endothelial cells in association with downregulation of vascular endothelial cadherin. J Gen Virol 89, 642-652.

    Falconar, A.K. (1997). The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol 142, 897-916.

    Falgout, B., Pethel, M., Zhang, Y.M., and Lai, C.J. (1991). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65, 2467-2475.

    Fields, M.L., Metzgar, M.H., Hondowicz, B.D., Kang, S.A., Alexander, S.T., Hazard, K.D., Hsu, A.C., Du, Y.Z., Prak, E.L., Monestier, M., et al. (2006). Exogenous and endogenous TLR ligands activate anti-chromatin and polyreactive B cells. J Immunol 176, 6491-6502.

    Fink, J., Gu, F., and Vasudevan, S.G. (2006). Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. Rev Med Virol 16, 263-275.

    Gubler, D.J., Reed, D., Rosen, L., and Hitchcock, J.R., Jr. (1978). Epidemiologic, clinical, and virologic observations on dengue in the Kingdom of Tonga. Am J Trop Med Hyg 27, 581-589.

    Halstead, S.B. (1981). The Alexander D. Langmuir Lecture. The pathogenesis of dengue. Molecular epidemiology in infectious disease. Am J Epidemiol 114, 632-648.
    Halstead, S.B., Shotwell, H., and Casals, J. (1973). Studies on the pathogenesis of dengue infection in monkeys. I. Clinical laboratory responses to primary infection. J Infect Dis 128, 7-14.
    Heinz, F.X., and Allison, S.L. (2000). Structures and mechanisms in flavivirus fusion. Adv Virus Res 55, 231-269.
    Henchal, E.A., and Putnak, J.R. (1990). The dengue viruses. Clin Microbiol Rev 3, 376-396.

    Huang, K.J., Li, S.Y., Chen, S.C., Liu, H.S., Lin, Y.S., Yeh, T.M., Liu, C.C., and Lei, H.Y. (2000). Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J Gen Virol 81, 2177-2182.

    Huang, K.J., Yang, Y.C., Lin, Y.S., Huang, J.H., Liu, H.S., Yeh, T.M., Chen, S.H., Liu, C.C., and Lei, H.Y. (2006). The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J Immunol 176, 2825-2832.

    Ishihara, K., and Hirano, T. (2002). IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 13, 357-368.

    King, A.D., Nisalak, A., Kalayanrooj, S., Myint, K.S., Pattanapanyasat, K., Nimmannitya, S., and Innis, B.L. (1999). B cells are the principal circulating mononuclear cells infected by dengue virus. Southeast Asian J Trop Med Public Health 30, 718-728.

    Kliks, S.C., Nimmanitya, S., Nisalak, A., and Burke, D.S. (1988). Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 38, 411-419.

    Kurane, I., Innis, B.L., Nimmannitya, S., Nisalak, A., Meager, A., Janus, J., and Ennis, F.A. (1991). Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J Clin Invest 88, 1473-1480.

    Lambotte, O., Cacoub, P., Costedoat, N., Le Moel, G., Amoura, Z., and Piette, J.C. (2003). High ferritin and low glycosylated ferritin may also be a marker of excessive macrophage activation. J Rheumatol 30, 1027-1028.

    Lau, C.M., Broughton, C., Tabor, A.S., Akira, S., Flavell, R.A., Mamula, M.J., Christensen, S.R., Shlomchik, M.J., Viglianti, G.A., Rifkin, I.R., et al. (2005). RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202, 1171-1177.
    Libraty, D.H., Endy, T.P., Houng, H.S., Green, S., Kalayanarooj, S., Suntayakorn, S., Chansiriwongs, W., Vaughn, D.W., Nisalak, A., Ennis, F.A., et al. (2002). Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis 185, 1213-1221.

    Lin, C.F., Lei, H.Y., Liu, C.C., Liu, H.S., Yeh, T.M., Wang, S.T., Yang, T.I., Sheu, F.C., Kuo, C.F., and Lin, Y.S. (2001). Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol 63, 143-149.

    Lin, C.F., Lei, H.Y., Shiau, A.L., Liu, C.C., Liu, H.S., Yeh, T.M., Chen, S.H., and Lin, Y.S. (2003). Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol 69, 82-90.

    Lin, C.F., Lei, H.Y., Shiau, A.L., Liu, H.S., Yeh, T.M., Chen, S.H., Liu, C.C., Chiu, S.C., and Lin, Y.S. (2002a). Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol 169, 657-664.

    Lin, Y.W., Wang, K.J., Lei, H.Y., Lin, Y.S., Yeh, T.M., Liu, H.S., Liu, C.C., and Chen, S.H. (2002b). Virus replication and cytokine production in dengue virus-infected human B lymphocytes. J Virol 76, 12242-12249.

    Lu, P.L., Hsiao, H.H., Tsai, J.J., Chen, T.C., Feng, M.C., Chen, T.P., and Lin, S.F. (2005). Dengue virus-associated hemophagocytic syndrome and dyserythropoiesis: a case report. Kaohsiung J Med Sci 21, 34-39.

    Prestwood, T.R., Prigozhin, D.M., Sharar, K.L., Zellweger, R.M., and Shresta, S. (2008). A Mouse-Passaged Dengue Virus Strain with Reduced Affinity for Heparan Sulfate Causes Severe Disease in Mice by Establishing Increased Systemic Viral Loads. J Virol. [Epub ahead of print]

    Randolph, V.B., Winkler, G., and Stollar, V. (1990). Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 174, 450-458.

    Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C., and Harrison, S.C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291-298.

    Rico-Hesse, R., Harrison, L.M., Salas, R.A., Tovar, D., Nisalak, A., Ramos, C., Boshell, J., de Mesa, M.T., Nogueira, R.M., and da Rosa, A.T. (1997). Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230, 244-251.

    Rothman, A.L., and Ennis, F.A. (1999). Immunopathogenesis of Dengue hemorrhagic fever. Virology 257, 1-6.

    Saito, M., Oishi, K., Inoue, S., Dimaano, E.M., Alera, M.T., Robles, A.M., Estrella, B.D., Jr., Kumatori, A., Moji, K., Alonzo, M.T., et al. (2004). Association of increased platelet-associated immunoglobulins with thrombocytopenia and the severity of disease in secondary dengue virus infections. Clin Exp Immunol 138, 299-303.

    Sangkawibha, N., Rojanasuphot, S., Ahandrik, S., Viriyapongse, S., Jatanasen, S., Salitul, V., Phanthumachinda, B., and Halstead, S.B. (1984). Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 120, 653-669.

    Shresta, S., Kyle, J.L., Robert Beatty, P., and Harris, E. (2004). Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice. Virology 319, 262-273.

    Shresta, S., Sharar, K.L., Prigozhin, D.M., Beatty, P.R., and Harris, E. (2006). Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 80, 10208-10217.

    Stiasny, K., Allison, S.L., Marchler-Bauer, A., Kunz, C., and Heinz, F.X. (1996). Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J Virol 70, 8142-8147.

    Vaughn, D.W., Green, S., Kalayanarooj, S., Innis, B.L., Nimmannitya, S., Suntayakorn, S., Endy, T.P., Raengsakulrach, B., Rothman, A.L., Ennis, F.A., et al. (2000). Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181, 2-9.

    Wang, S., He, R., Patarapotikul, J., Innis, B.L., and Anderson, R. (1995). Antibody-enhanced binding of dengue-2 virus to human platelets. Virology 213, 254-257.
    Wang, W.K., Chao, D.Y., Kao, C.L., Wu, H.C., Liu, Y.C., Li, C.M., Lin, S.C., Ho, S.T., Huang, J.H., and King, C.C. (2003). High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology 305, 330-338.

    Watts, D.M., Porter, K.R., Putvatana, P., Vasquez, B., Calampa, C., Hayes, C.G., and Halstead, S.B. (1999). Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet 354, 1431-1434.

    Wengler, G. (1989). Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol 63, 2521-2526.

    Whitehead, S.S., Blaney, J.E., Durbin, A.P., and Murphy, B.R. (2007). Prospects for a dengue virus vaccine. Nat Rev Microbiol 5, 518-528.

    Yang, K.D., Lee, C.S., and Shaio, M.F. (1995a). A higher production of platelet activating factor in ex vivo heterologously secondary dengue-2 virus infections. Acta Microbiol Immunol Hung 42, 403-407.

    Yang, K.D., Wang, C.L., and Shaio, M.F. (1995b). Production of cytokines and platelet activating factor in secondary dengue virus infections. J Infect Dis 172, 604-605.

    下載圖示 校內:2010-08-14公開
    校外:2010-08-14公開
    QR CODE