簡易檢索 / 詳目顯示

研究生: 盧俊宏
Lu, Jyun-Hong
論文名稱: B-spline有限元素法於三維彈性力學不規則實體應用
The application of B-spline finite element method in three dimensional elastic irregular problems
指導教授: 何旭彬
Ho, Shi-Pin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 69
中文關鍵詞: B-spline有限元素法基底函數細切
外文關鍵詞: refinement, basis function, B-spline finite element method
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以具Ck-2連續性的B-spline函數為基底函數解三維不規則形狀彈性力學問題,並使用二至六階的B-spline函數針對不同網格大小下進行分析。B-spline有限元素法於一維與二維結構、熱傳、電磁場等工程問題逐漸有較多的文獻提到其應用,較少有文獻提及將其應用在處理三維不規則形狀問題,因此本文主要探討B-spline於三維不規則形狀問題的適用性。
    首先針對立方實體中心內含空心圓球的例子,發現相對於傳統二階有限元素法,B-spline有限元素法能以較少的自由度得到接近收斂值的結果,表現出B-spline在自由度上的優勢。其後陸續測試立方實體內含空心橢圓柱及內含空心橢球的例子,發現當網格元素愈少,表現不出高階B-spline的收斂性,但當網格元素愈多,其高階收斂性的展現使得所求得的應力值接近於ANSYS的收斂值,且高階所花的自由度皆較ANSYS少很多,因此針對將B-spline有限元素法應用於三維不規則實體中,依舊如同一維與二維B-spline的優勢,能花相當少的自由度得到相當於ANSYS的收斂值。
    最後提出三維細切方法,使得使用者可就關心的區域做局部更細密的網格化,以較少的自由度及元素個數求得更準確的結果。

    We used the B-spline functions which has Ck-2 continuity as the basis functions to solve three dimensional elastic problems with irregular shapes. We use B-spline functions from second order to sixth order to analyze different element size on the problems with different irregular shapes. There are some papers using B-spline finite element method with structure, heat transfer and electromagnetic field problems in one and two dimensional problems now. There are less researchers using B-spline functions to analyze three dimensional elastic problems with irregular shapes. Therefore we study the applicability of B-spline finite element in three dimensional irregular problems.
    The first irregular shape in these studies is a cube with a sphere hole. We find B-spline finite element method can use lesser degree of freedom to obtain the same accuracy compare with the traditional finite element method. A cube with a ellipse cylinder hole and a cube with a ellipsoid hole are used as the others irregular shapes examples in the thesis. In both cases, we find that it dosen’t show better result accuracy from high-order B-spline basis functions. When element numbers become larger, the effect of high order B-spline basis function is shown. In the situation, we obtain the stress result near the ANSYS’s stress convergence value. The high-order B-spline finite element method uses degree of freedom lesser than ANSYS. The application of B-spline finite element method in three dimensional irregular problems obtains the same stress convergence value results compare with the ANSYS with lesser degree of freedoms. Using B-spline in three dimensional irregular problems appears the advantage of degree of freedom as good as one and two dimensional problems.
    Finally, we proposed a method of refinement for three dimensional. With this method, the user can focus concerning area with a finer mesh. We can use lesser degree of freedoms and elements to get a more accurate result with local fine mesh in the analysis.

    目錄 摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 論文架構 5 第二章 三維彈性力學理論及B-spline曲線介紹 7 2.1 三維彈性力學理論 7 2.2 B-spline曲線介紹 11 2.2.1 非均勻B-spline曲線 12 2.2.2 均勻B-spline曲線 15 第三章 三維B-spline有限元素法 18 3.1 基底函數 18 3.2 網格化 21 3.3 元素積分方式 23 3.4 邊界條件 29 3.5 自由度算法 30 3.6 細切 31 第四章 三維B-spline有限元素法應用範例 38 4.1 三維不規則實體應力分析 38 4.1.1 實體中心內含空心圓球 39 4.1.2 實體中心內含空心橢圓柱 45 4.1.3 實體中心內含空心橢圓球 56 4.2 細切於三維不規則實體問題之應用 60 第五章 結論與建議 64 參考文獻 66 自述 69

    [1] Ali, A.H.A., Gardner, L.R.T. and Gardner, G.A., “A collocation solution for Burgers’ equation using cubic B-spline finite elements.”, Computer methods in applied mechanics and engineering, Vol. 100, 325-337, 1992.
    [2] Aggarwal, B., “B-spline finite elements for plane elasticity problems”, Texas A&M university, 2006.
    [3] Bahadır, A.R., “Application of cubic B-spline finite element technique to the thermistor problem”, Applied Mathematics and Computation, Vol. 149, 379–387, 2004.
    [4] Burla, Ravi K. and Kumar, Ashok V., “Implicit boundary method for analysis using uniform B-spline basis and structured grid”, International journal for numerical methods in engineering, Vol. 76, 1993–2028, 2008.
    [5] Clough, R.W., “The finite element method in plane stress analysis”, Proceedings of 2nd conference on electronic computation. Pittsburgh: American society of civil engineers, 345-378, 1960.
    [6] Dag, I., “A quadratic B-spline finite element method for solving nonlinear Schrödinger equation”, Computer methods in applied mechanics and engineering, Vol. 174, 247-258, 1999.
    [7] Höllig, K., Finite element methods with B-splines, Society for industrial and applied mathematics, Philadelphia, 2003.
    [8] Hikmet, C., Nazan, C. and Khaled, E., “B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems”, Applied mathematics and computation, Vol. 175, 72 - 79, 2006.
    [9] Liang, X., Jian, B., & Ni, G., “The B-spline finite element method in electromagnetic field numerical analysis”, IEEE transactions on magnetics, Vol. 23, 2641-2643, 1987.
    [10] Ni, G., Xu, X., & Jian, B., “B-spline finite element method for eddy current field analysis”, IEEE transactions on magnetics, Vol. 26, 723 - 726, 1990.
    [11] Özis, T., Esen, A., & Kutluay, S., “Numerical solution of Burgers’ equation by quadratic B-spline finite elements”, Applied mathematics and computation, Vol. 165, 237-249, 2005.
    [12] Pöschl, W., “B-spline finite elements and their efficiency in solving relativistic mean field equations”, Computer physics communications, Vol. 112, 42-66, 1998.
    [13] Reddy, J. N., An introduction to the finite element method, McGraw-Hill, Texas, 2006.
    [14] Schoenberg, I. J., “Contributions to the problem of approximation of equidistant data by analytic functions”, Quarterly of applied mathematics, Vol. 4, 45-99、112-141, 1946.
    [15] Xiang, J., Chen, X., He, Y. and He, Z., “The construction of plane elastomechanics and mindlin plate elements of B-spline wavelet on the interval”, Finite elements in analysis and design, Vol. 42, 1269 - 1280, 2006.
    [16] Zamani, N,G., “A least squares finite element method applied to B-spline”, Journal of the Franklin institute, Vol. 311, (3), 195-208, 1981.
    [17] Zamani, N,G., “Least squares finite element approximation of navier’s equation”, Journal of the Franklin Institute, Vol. 311, (5), 311-321, 1981.
    [18] 張家源,“B-spline有限元素法解三維彈性力學問題”,國立成功大學機械工程研究所碩士論文,2008。
    [19] 張家豪,“B-spline有限元素法使用者圖形介面的開發及網格化處理”,國立成功大學機械工程研究所碩士論文,2009。
    [20] 陳政德,“B-spline有限元素法於二維平面應力問題收斂性探討”, 國立成功大學機械工程研究所碩士論文,2008。
    [21] 趙啟翔,“B-spline有限元素法於二維平面應力問題之研究”,國立成功大學機械工程研究所碩士論文,2007。

    下載圖示 校內:立即公開
    校外:2009-06-30公開
    QR CODE