| 研究生: |
謝醉遊 Hsieh, Tsui-Yu |
|---|---|
| 論文名稱: |
增強型堀入式 p 型氧化鎳閘極氮化鋁銦/氮化鎵高電子遷移率電晶體之研究 Study of Normally-off InAlN/GaN HEMTs with Recessed Gate Structure and p-type NiOx Gate |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
智慧半導體及永續製造學院 - 半導體製程學位學程 Program on Semiconductor Manufacturing Technology |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 氮化鋁銦 、p 型氧化鎳 、增強型元件 、堀入式閘極結構 、高電子遷移率電晶 體 |
| 外文關鍵詞: | indium aluminum nitride (InAlN), p-type nickel oxide (p − NiO!), enhanced mode devices, recessed gate structure, high electron mobility transistor |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1.U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs-an overview of device operation and applications,” Proc. IEEE, vol. 90, no. 6, pp. 1022–1031, Jun. 2002, doi: 10.1109/jproc.2002.1021567.
2.L. F. Eastman and U. K. Mishra, "The toughest transistor yet [GaN transistors]," in IEEE Spectrum, vol. 39, no. 5, pp. 28-33, May 2002,doi:10.1109/6.999791.
3.U. K. Mishra, L. Shen, T. E. Kazior, and Y.-F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE, vol. 96, no. 2, pp. 287–305, 2008
4.K. J. Chen et al., “GaN-on-Si power technology: Devices and applications,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 779–795,Mar. 2017, doi:10.1109/TED.2017.2657579.
5.O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, Mar. 1999, doi: 10.1063/1.369664.
6.M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN–AlxGa1−xN heterojunction,” Appl. Phys. Lett., vol. 63, no. 9, pp. 1214–1215, Aug. 1993.
7.J. H. Ryou et al., “Effect of spontaneous and piezoelectric polarization on electronic properties of AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 105, no. 6, p. 061736, Mar. 2009, doi: 10.1063/1.3097010.
8.M. M. El-Sawi and H. A. Ibrahim, “Normally-off Transistor Topologies in Gallium Nitride Technology,” in Gallium Nitride-Based Electronic Devices, 2020, pp. 1–22, doi: 10.5772/intechopen.91223.
9.J. Kuzmik, "Power electronics on InAlN/(In)GaN: Prospect for a record performance," in IEEE Electron Device Letters, vol. 22, no. 11, pp. 510-512, Nov. 2001, doi: 10.1109/55.962646.
10.R. Wang, “Gate-recessed enhancement-mode InAlN/AlN/GaN HEMTs with 1.9-A/mm drain current density and 800-mS/mm transconductance,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1383–1385, Dec. 2010.
11.L. Zhang, Z. Zheng, S. Yang, W. Song, J. He, and K. J. Chen, “p-GaN gate HEMT with surface reinforcement for enhanced gate reliability,” IEEE Electron Device Lett., vol. 42, no. 1, pp. 22–25, Jan. 2021.
12.M. Ge, Y. Li, Y. Zhu, D. Chen, Z. Wang, and S. Tan, “Suppression of leakage current of p-GaN gate AlGaN/GaN HEMTs with beta-Ga2O3 back barrier,” J. Phys. D, Appl. Phys., vol. 55, no. 6, 2022, Art. no. 065104.
13.Y. Huang, “High-performance normally off p-GaN gate high-electron-mobility transistor with In_0.17 Al_0.83 N barrier layer design,” Opt. Quantum Electron., vol. 53, p. 139, Feb. 2021.
14.C. -H. Wu et al., "High-Performance Normally-OFF GaN MIS-HEMTs Using Hybrid Ferroelectric Charge Trap Gate Stack (FEG-HEMT) for Power Device Applications," in IEEE Electron Device Letters, vol. 39, no. 7, pp. 991-994, July 2018, doi: 10.1109/LED.2018.2825645.
15.K. Ahmeda, B. Ubochi, M. H. Alqaysi, A. Al-Khalidi, E. Wasige, and K. Kalna, “The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation,” Microelectronics Reliability, vol. 115, pp. 1-6, Dec. 2020, doi: 10.1016/j.microrel.2020.114002.
16.Z.-H. Huang et al., “Investigation of time-dependent gate dielectric breakdown in recessed E-mode GaN MIS-HEMTs using ferroelectric charge trap gate stack (FEG-HEMT),” Microelectronics Reliability, vol. 150, p. 115215, Nov. 2023.
17.S. K. Rathaur, J. -S. Wu, T. -Y. Yang, A. Amin, A. Dixit and E. Y. Chang, "High-Temperature TDDB Investigation on High Performance-Centered Hybrid HZO/HfON/Al2O3, Ferro-Electric Charge-Trap (FEG) GaN-HEMT," in IEEE Transactions on Electron Devices, vol. 70, no. 9, pp. 4584-4590, Sept. 2023, doi: 10.1109/TED.2023.3295766.
18.F. Medjdoub, “Effect of fluoride plasma treatment on InAlN/GaN HEMTs,” Electron. Lett., vol. 44, no. 11, pp. 696–698, 2008.
19.Y. -P. Huang, C. -S. Lee and W. -C. Hsu, "Normally-Off InAlN/GaN Fin MOSHEMT with Fluorine Treatment," 2020 Device Research Conference (DRC), Columbus, OH, USA, 2020, pp.12, doi:10.1109/DRC50226.2020.9135151.
20.Y. -P. Huang, W. -C. Hsu, H. -Y. Liu and C. -S. Lee, "Enhancement-Mode Tri-Gate Nanowire InAlN/GaN MOSHEMT for Power Applications," in IEEE Electron Device Letters, vol. 40, no. 6, pp. 929-932, June 2019, doi: 10.1109/LED.2019.2911698.
21.S. Kumar, “Investigation of Ta2O5 as an alternative high-k dielectric for InAlN/GaN MOS-HEMT on Si,” IEEE Trans. Electron Devices, vol. 66, no. 3, pp. 1230–1235, Mar. 2019.
22.S. D. Gupta, “Positive threshold voltage shift in AlGaN/GaN HEMTs and E-mode operation by Al x Ti x O based gate stack engineering,” IEEE Trans. Electron Devices, vol. 66, no. 6, pp. 2544–2550, Jun. 2019. S. D. Gupta, “Positive threshold voltage shift in AlGaN/GaN HEMTs and E-mode operation by Al x Ti x O based gate stack engineering,” IEEE Trans. Electron Devices, vol. 66, no. 6, pp. 2544–2550, Jun. 2019.
23.J. Qin, J. Chen, W. Xiao, and H. Wang, "Investigation of Electrical Property and Thermal Stability in Enhancement-Mode InxAl1–xN/AlN/GaN MOS-HEMTs Fabricated by Using NiOx Gate and Fluorine Treatment," IEEE J. Electron Devices Soc., vol. 12, pp. 104-112, 2024, doi: 10.1109/JEDS.2024.3360244.
24.Y. Lv et al., “Over 1200 V Normally-OFF p-NiO Gated AlGaN/GaN HEMTs on Si With a Small Threshold Voltage Shift,” IEEE Electron Device Lett., vol. 42, no. 11, pp. 1618-1621, Nov. 2021, doi: 10.1109/LED.2021.3117565.
25.Y. Du et al., “Current transport dynamics and stability characteristics of the NiOx based gate structure for normally-off GaN HEMTs,” J. Phys. D: Appl. Phys., vol. 55, no. 47, p. 474001, Oct. 2022, doi: 10.1088/1361-6463/ac9146.
26.L. Zhu, X. Zhang, G. Li, and J. Chen, “Tunable electrical properties of NiO thin films and p-type thin-film transistors,” Thin Solid Films, vol. 595, pp. 248-252, Nov. 2015, doi: 10.1016/j.tsf.2015.09.043.
27.L. Zhu, G. Li, X. Zhang, and J. Chen, “Three dimensional-stacked complementary thin-film transistors using n-type Al:ZnO and p-type NiO thin-film transistors,” Applied Physics Letters, vol. 106, no. 18, p. 183502, May 2015, doi: 10.1063/1.4920952.
28.K. R. V. K. Phani, “Solution Combustion Synthesis: Low-Temperature Processing for p-Type Cu:NiO Thin Films for Transparent Electronics,” Journal of Electronic Materials, vol. 45, pp. 6013-6019, Sep. 2016, doi: 10.1007/s11664-016-4860-2.
29.J. H. Seo, J. Park, and K. S. Kim, “p-Type NiO Hybrid Visible Photodetector,” ACS Applied Materials & Interfaces, vol. 6, no. 19, pp. 16584-16589, Sep. 2014, doi: 10.1021/am502967t.
30.G. J. Li, J. Chen, X. W. Zhang, Z. Z. Ma, and L. Zhu, “Photoresponse of solution-processed transparent heterojunction ultraviolet photodetectors composed of n-type ZTO and p-type NiO-based semiconductor thin films,” Applied Physics Letters, vol. 104, no. 23, p. 233502, Jun. 2014, doi: 10.1063/1.4883395.
31.D. C. Guo et al., “Highly Sensitive and Stable Self-Powered UV Photodetector Based on Amorphous ZnGa2O4/NiO Type-II p-n Heterojunction via Low-Temperature and Band Alignment,” ACS Applied Materials & Interfaces, vol. 10, no. 11, pp. 9548-9556, Mar. 2018, doi: 10.1021/acsami.8b00021.
32.J. Qin, J. Chen, W. Xiao and H. Wang, "Investigation of Electrical Property and Thermal Stability in Enhancement-Mode In_x Al_(1-x) N/AlN/GaN MOS-HEMTs Fabricated by Using NiOx Gate and Fluorine Treatment," in IEEE Journal of the Electron Devices Society, vol. 12, pp. 104-112, 2024, doi: 10.1109/JEDS.2024.3360244.
33.M. Guziewicz1, J. Grochowski, M. Borysiewicz , E. Kaminska, J. Z. Domagala, W.Rzodkiewicz , B. S. Witkowski, K. Golaszewska , R. Kruszka, M. Ekielski , A. Piotrowska“Electrical and optical properties of NiO films deposited by magnetron sputtering” Optica Applicata, Vol. XLI, No. 2, 2011
34.S. Y. Park, H. R. Kim, Y. J. Kang, D. H. Kim, and J. W. Kang “Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer” Solar Energy Materials and Solar Cells, Vol. 94, Iss. 12, Pages 2332–2336 Dec 2010,
35.M. Napari et al., “Antiferromagnetism and p-type conductivity of nonstoichiometric nickel oxide thin films,” InfoMat, vol. 2, no. 3, pp. 601-610, May 2020, doi: 10.1002/inf2.12076.
36.L. Zhu, X. Zhang, G. Li, and J. Chen, “Tunable electrical properties of NiO thin films and p-type thin-film transistors,” Thin Solid Films, vol. 592, pp. 248-252, Sep. 2015, doi: 10.1016/j.tsf.2015.09.025.
37.M. D. Irwin et al., “p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 8, pp. 2783–2787, Feb. 2008, doi: 10.1073/pnas.0711990105.
38.R. Karsthof, A. M. Anton, F. Kremer, and M. Grundmann, “Nickel vacancy acceptor in nickel oxide: Doping beyond thermodynamic equilibrium,” Phys. Rev. Mater., vol. 4, no. 3, p. 034601, Mar. 2020, doi: 10.1103/PhysRevMaterials.4.034601.
校內:2030-08-05公開