簡易檢索 / 詳目顯示

研究生: 陳昫仰
Chen, Hus-Yang
論文名稱: 以鐵電微影操控金奈米粒子的排列
Controlling the Arrangement of Gold Nanoparticles by Ferroelectric Lithography
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 鐵電微影鐵酸鉍金奈米粒子表面增強拉曼光譜
外文關鍵詞: Ferroelectric Lithography, BiFeO3, Gold nanoparticle, Surface-Enhanced Raman Spectroscopy
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   金奈米粒子受電場影響時,會造成電子雲的集體震盪而產生表面電漿子,而緊密排列的金奈米粒子對可引發高度局域性的電場共振效應。因此,金奈米粒子被廣泛應用在生醫檢測、表面增強拉曼光譜等領域上。
      在本研究中,將探討以鐵電微影技術(Ferroelectric Lithography)操縱金奈米粒子在多鐵性材料鐵酸鉍(BiFeO3)上的排列與吸附密度的方法。
    藉由控制掃描式電子束顯微鏡(Scanning Electron Microscope,SEM)的電子束加速電壓與電子束照射劑量來改變二次電子散射機率,使BiFeO3局部表面累積電荷,並以表面電位顯微鏡(KFM)的鐵電微影技術(Ferroelectric Lithography),確認該區域之表面電位。最後將樣品置入金奈米粒子溶液中,使正電位之區塊能吸附表面帶有負電之金奈米粒子;反之負電位則會排斥。
      以此實驗方法,可使BiFeO3局部表面吸引或排斥金奈米粒子,並調控其吸附密度與區塊大小。

    Surface plasmons are coherent electron oscillations that exist at the interface between any two materials, and the excitation of surface plasmons is frequently used in an experimental technique known as surface plasmon resonance (SPR). The most commonly material that people used to excite surface plasmons are silver and gold nano particle.
    This study focus on manipulating the arrangement of gold nano particles (AuNPs) on the surface of BiFeO3 (BFO), multiferroic materials, by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM).
    According to the previous studies, controlling the acceleration voltage and the dose of the electron beam could change the scattering probability of secondary electrons of SEM. By using this technique, the charges could be trapped on the surface of BFO. The positively or negatively trapped charges could be distinguished from surface potential measured by Kelvin probe force microscopy (KFM). The negatively-charged AuNPs would be attracted to the area trapping positive charge. In addition, we could manipulate the arrangement of gold nano particles, due to charges distribution could be modified by AFM in the areas which have scanned by SEM. The different AuNPs patterns would excite different surface plasmon modes.

    摘要 I Abstract II 致謝 III 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 第二章 文獻回顧 3 2.1. 金屬奈米粒子 3 2.1.1. 金奈米粒子簡介 3 2.1.2. 金奈米粒子的製成 5 2.1.3. 常見操控金奈米粒子之方法 6 2.2. 多鐵性材料簡介 10 2.3. 鐵酸鉍材料性質[8] 13 2.4. 局部表面電漿原理 15 2.4.1. 表面電漿理論基礎 15 2.4.2. 粒子尺寸與幾何形狀對表面電漿的影響 22 2.4.3 奈米粒子周圍介電常數的影響 23 2.4.3. 表面拉曼訊號增強效應 24 第三章 實驗方法 28 3.1. 實驗流程 28 3.2. 掃描式電子顯微鏡 30 3.2.1. 掃描式電子顯微鏡原理 30 3.2.2. 背向散射電子與二次散射電子[20] 31 3.3. 原子力顯微鏡 33 3.3.1. 原子力顯微鏡之架構與原理[21] 33 3.3.2. 原子力顯微鏡成像之原理 35 3.3.3. 表面電位顯微鏡[21] 38 3.4. 拉曼光譜原理 40 3.4.1. 拉曼散射機制 40 3.4.2. 拉曼散射的古典波動模型 42 3.4.3. 微拉曼散射系統介紹 44 第四章 實驗結果與討論 46 4.1. 金奈米粒子的製備 46 4.1.1. 配置步驟(方法一)[23] 46 4.1.2. 單寧酸濃度對金奈米粒子 48 4.1.3. 配置步驟(方法二)[25] 49 4.2. SEM微影技術調控BFO表面電位 52 4.2.1. SEM調控BFO表面電位原理 52 4.2.2. 改變SEM照射參數對BFO表面電位之影響 55 4.3. 鐵電材料影響表面電位之解釋 60 4.3.1. SEM照射BFO影響電位之討論-照射初期 60 4.3.2. SEM照射BFO影響電位之討論-成長過程 64 4.3.3. BFO能帶結構對SEM電子束之影響 65 4.4. 經鐵電微影技術處理後BFO之應用 72 4.4.1. 金奈米粒子的吸附與排斥 72 4.4.2. BFO表面增強拉曼光譜 80 第五章 結論 83 參考文獻 84

    [1] A. Moores, and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New Journal of Chemistry, vol. 30, no. 8, pp. 1121-1132, 2006.
    [2] M. Faraday, “The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light,” Philosophical Transactions of the Royal Society of London, vol. 147, pp. 145-181, 1857.
    [3] 黃. 郭清癸, 牟中原, “金屬奈米粒子的製造,” 物理雙月刊, vol. 廿三卷六期, pp. 614-624, 2001.
    [4] M.-H. Lin et al., “Multilength-Scale Chemical Patterning of Self-Assembled Monolayers by Spatially Controlled Plasma Exposure: Nanometer to Centimeter Range,” Journal of the American Chemical Society, vol. 131, no. 31, pp. 10984-10991, 2009/08/12, 2009.
    [5] D. Conklin et al., “Controlling Polarization Dependent Reactions to Fabricate Multi-Component Functional Nanostructures,” Advanced Functional Materials, vol. 21, no. 24, pp. 4712-4718, 2011.
    [6] W. Eerenstein, Mathur, N. D., Scott, J. F., “Multiferroic and magnetoelectric materials,” Nature Photonics, vol. 442, no. 7104, pp. 759, 2006.
    [7] C.-W. Nan et al., “Multiferroic magnetoelectric composites: Historical perspective, status, and future directions,” Journal of Applied Physics, vol. 103, no. 3, pp. -, 2008.
    [8] J. Wang et al., “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures,” Science, vol. 299, no. 5613, pp. 1719-1722, March 14, 2003, 2003.
    [9] D. Fu, Suzuki, Kazuyuki, Kato, Kazumi ,Minakata, Makoto, Suzuki, Hisao, “Investigation of Domain Switching and Retention in Oriented PbZr0.3Ti0.7O3 Thin Film by Scanning Force Microscopy,” Japanese Journal of Applied Physics, vol. 41, pp. 6724-6729, 2002.
    [10] S. Link, and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” The Journal of Physical Chemistry B, vol. 103, no. 21, pp. 4212-4217, 1999/05/01, 1999.
    [11] S. Underwood, and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir, vol. 10, no. 10, pp. 3427-3430, 1994/10/01, 1994.
    [12] K. Kneipp et al., “Ultrasensitive chemical analysis by Raman spectroscopy,” Chemical Reviews, vol. 99, no. 10, pp. 2957-2976, 1999.
    [13] K. Kneipp et al., “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem Rev, vol. 99, no. 10, pp. 2957-76, Oct 13, 1999.
    [14] Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1343-1348, 2009.
    [15] A. Otto, "Surface-enhanced Raman scattering: “Classical” and “Chemical” origins," Light Scattering in Solids IV, Topics in Applied Physics M. Cardona and G. Güntherodt, eds., pp. 289-418: Springer Berlin Heidelberg, 1984.
    [16] A. Otto et al., “Surface-enhanced Raman scattering,” Journal of Physics: Condensed Matter, vol. 4, no. 5, pp. 1143, 1992.
    [17] A. Campion, and P. Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews, vol. 27, no. 4, pp. 241-250, 1998.
    [18] 汪建民, “材料分析,” 中國材料科學學會, 1998.
    [19] J. Cazaux, “Material contrast in SEM: Fermi energy and work function effects,” Ultramicroscopy, vol. 110, no. 3, pp. 242-53, Feb, 2010.
    [20] J. Cazaux, “From the physics of secondary electron emission to image contrasts in scanning electron microscopy,” J Electron Microsc (Tokyo), vol. 61, no. 5, pp. 261-84, 2012.
    [21] 曾賢德, and 果尚志, “奈米電性之掃描探針量測技術,” 物理雙月刊, vol. 25-5, pp. 632-648, 2003.
    [22] 陳力俊, “材料電子顯微鏡學,” 行政院國家科學委員會精密儀器發展中心, 2003.
    [23] 王冠鈞, “鐵酸鉍薄膜之表面電漿增強拉曼光譜研究,” 國立成功大學, vol. 碩士論文, 102.
    [24] J. W. Slot, and H. J. Geuze, “A new method of preparing gold probes for multiple-labeling cytochemistry,” Eur J Cell Biol, vol. 38, no. 1, pp. 87-93, Jul, 1985.
    [25] 許景翔, “金奈米粒子合成及表面化學改質與其應用於DNA 分子雜交動力學之探討,” 國立中央大學碩士論文, 1993.
    [26] S. Zhu, and W. Cao, “Imaging of 180° Ferroelectric Domains in LiTaO3 by Means of Scanning Electron Microscopy,” physica status solidi (a), vol. 173, no. 2, pp. 495-502, 1999.
    [27] L. Pintilie et al., “Orientation-dependent potential barriers in case of epitaxial Pt-BiFeO3-SrRuO3 capacitors,” Applied Physics Letters, vol. 94, no. 23, pp. 3, Jun, 2009.

    下載圖示 校內:2016-02-06公開
    校外:2016-02-06公開
    QR CODE