| 研究生: |
陳昫仰 Chen, Hus-Yang |
|---|---|
| 論文名稱: |
以鐵電微影操控金奈米粒子的排列 Controlling the Arrangement of Gold Nanoparticles by Ferroelectric Lithography |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 鐵電微影 、鐵酸鉍 、金奈米粒子 、表面增強拉曼光譜 |
| 外文關鍵詞: | Ferroelectric Lithography, BiFeO3, Gold nanoparticle, Surface-Enhanced Raman Spectroscopy |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金奈米粒子受電場影響時,會造成電子雲的集體震盪而產生表面電漿子,而緊密排列的金奈米粒子對可引發高度局域性的電場共振效應。因此,金奈米粒子被廣泛應用在生醫檢測、表面增強拉曼光譜等領域上。
在本研究中,將探討以鐵電微影技術(Ferroelectric Lithography)操縱金奈米粒子在多鐵性材料鐵酸鉍(BiFeO3)上的排列與吸附密度的方法。
藉由控制掃描式電子束顯微鏡(Scanning Electron Microscope,SEM)的電子束加速電壓與電子束照射劑量來改變二次電子散射機率,使BiFeO3局部表面累積電荷,並以表面電位顯微鏡(KFM)的鐵電微影技術(Ferroelectric Lithography),確認該區域之表面電位。最後將樣品置入金奈米粒子溶液中,使正電位之區塊能吸附表面帶有負電之金奈米粒子;反之負電位則會排斥。
以此實驗方法,可使BiFeO3局部表面吸引或排斥金奈米粒子,並調控其吸附密度與區塊大小。
Surface plasmons are coherent electron oscillations that exist at the interface between any two materials, and the excitation of surface plasmons is frequently used in an experimental technique known as surface plasmon resonance (SPR). The most commonly material that people used to excite surface plasmons are silver and gold nano particle.
This study focus on manipulating the arrangement of gold nano particles (AuNPs) on the surface of BiFeO3 (BFO), multiferroic materials, by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM).
According to the previous studies, controlling the acceleration voltage and the dose of the electron beam could change the scattering probability of secondary electrons of SEM. By using this technique, the charges could be trapped on the surface of BFO. The positively or negatively trapped charges could be distinguished from surface potential measured by Kelvin probe force microscopy (KFM). The negatively-charged AuNPs would be attracted to the area trapping positive charge. In addition, we could manipulate the arrangement of gold nano particles, due to charges distribution could be modified by AFM in the areas which have scanned by SEM. The different AuNPs patterns would excite different surface plasmon modes.
[1] A. Moores, and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New Journal of Chemistry, vol. 30, no. 8, pp. 1121-1132, 2006.
[2] M. Faraday, “The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light,” Philosophical Transactions of the Royal Society of London, vol. 147, pp. 145-181, 1857.
[3] 黃. 郭清癸, 牟中原, “金屬奈米粒子的製造,” 物理雙月刊, vol. 廿三卷六期, pp. 614-624, 2001.
[4] M.-H. Lin et al., “Multilength-Scale Chemical Patterning of Self-Assembled Monolayers by Spatially Controlled Plasma Exposure: Nanometer to Centimeter Range,” Journal of the American Chemical Society, vol. 131, no. 31, pp. 10984-10991, 2009/08/12, 2009.
[5] D. Conklin et al., “Controlling Polarization Dependent Reactions to Fabricate Multi-Component Functional Nanostructures,” Advanced Functional Materials, vol. 21, no. 24, pp. 4712-4718, 2011.
[6] W. Eerenstein, Mathur, N. D., Scott, J. F., “Multiferroic and magnetoelectric materials,” Nature Photonics, vol. 442, no. 7104, pp. 759, 2006.
[7] C.-W. Nan et al., “Multiferroic magnetoelectric composites: Historical perspective, status, and future directions,” Journal of Applied Physics, vol. 103, no. 3, pp. -, 2008.
[8] J. Wang et al., “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures,” Science, vol. 299, no. 5613, pp. 1719-1722, March 14, 2003, 2003.
[9] D. Fu, Suzuki, Kazuyuki, Kato, Kazumi ,Minakata, Makoto, Suzuki, Hisao, “Investigation of Domain Switching and Retention in Oriented PbZr0.3Ti0.7O3 Thin Film by Scanning Force Microscopy,” Japanese Journal of Applied Physics, vol. 41, pp. 6724-6729, 2002.
[10] S. Link, and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” The Journal of Physical Chemistry B, vol. 103, no. 21, pp. 4212-4217, 1999/05/01, 1999.
[11] S. Underwood, and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir, vol. 10, no. 10, pp. 3427-3430, 1994/10/01, 1994.
[12] K. Kneipp et al., “Ultrasensitive chemical analysis by Raman spectroscopy,” Chemical Reviews, vol. 99, no. 10, pp. 2957-2976, 1999.
[13] K. Kneipp et al., “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem Rev, vol. 99, no. 10, pp. 2957-76, Oct 13, 1999.
[14] Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1343-1348, 2009.
[15] A. Otto, "Surface-enhanced Raman scattering: “Classical” and “Chemical” origins," Light Scattering in Solids IV, Topics in Applied Physics M. Cardona and G. Güntherodt, eds., pp. 289-418: Springer Berlin Heidelberg, 1984.
[16] A. Otto et al., “Surface-enhanced Raman scattering,” Journal of Physics: Condensed Matter, vol. 4, no. 5, pp. 1143, 1992.
[17] A. Campion, and P. Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews, vol. 27, no. 4, pp. 241-250, 1998.
[18] 汪建民, “材料分析,” 中國材料科學學會, 1998.
[19] J. Cazaux, “Material contrast in SEM: Fermi energy and work function effects,” Ultramicroscopy, vol. 110, no. 3, pp. 242-53, Feb, 2010.
[20] J. Cazaux, “From the physics of secondary electron emission to image contrasts in scanning electron microscopy,” J Electron Microsc (Tokyo), vol. 61, no. 5, pp. 261-84, 2012.
[21] 曾賢德, and 果尚志, “奈米電性之掃描探針量測技術,” 物理雙月刊, vol. 25-5, pp. 632-648, 2003.
[22] 陳力俊, “材料電子顯微鏡學,” 行政院國家科學委員會精密儀器發展中心, 2003.
[23] 王冠鈞, “鐵酸鉍薄膜之表面電漿增強拉曼光譜研究,” 國立成功大學, vol. 碩士論文, 102.
[24] J. W. Slot, and H. J. Geuze, “A new method of preparing gold probes for multiple-labeling cytochemistry,” Eur J Cell Biol, vol. 38, no. 1, pp. 87-93, Jul, 1985.
[25] 許景翔, “金奈米粒子合成及表面化學改質與其應用於DNA 分子雜交動力學之探討,” 國立中央大學碩士論文, 1993.
[26] S. Zhu, and W. Cao, “Imaging of 180° Ferroelectric Domains in LiTaO3 by Means of Scanning Electron Microscopy,” physica status solidi (a), vol. 173, no. 2, pp. 495-502, 1999.
[27] L. Pintilie et al., “Orientation-dependent potential barriers in case of epitaxial Pt-BiFeO3-SrRuO3 capacitors,” Applied Physics Letters, vol. 94, no. 23, pp. 3, Jun, 2009.