簡易檢索 / 詳目顯示

研究生: 黃冠凱
Huang, Guan-Kai
論文名稱: 砷化鋁鎵/砷化銦鎵/砷化鎵 假性高電子遷移率電晶體模型參數萃取與建立
AlGaAs/InGaAs/GaAs pHEMT Model Parameter Extraction and Establishment
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 88
中文關鍵詞: 元件模型假性高電子遷移率電晶體
外文關鍵詞: device model, pHEMT
相關次數: 點閱:84下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨是在針對砷化鋁鎵/砷化銦鎵/砷化鎵假性高電子遷移率電晶體建立其高頻元件模型,包括一般用來小信號模型、大信號模型以及高頻雜訊模型。

    在元件小信號模型的建立方面,我們利用了Yang-Long的量測方法萃取寄生源極電阻,接著用一般常用的cold-FET量測技術萃取其他的寄生參數,在萃取出寄生參數後,利用數學運算將寄生參數扣除,剩下元件的本質等效電路後,再用其Y參數求得小信號模型的本質參數。在cold-FET量測方法裡,我們在閘極端分別加了兩種不同大小的偏壓來簡化元件的等效電路,一種是加強順偏,一種是不加翩壓。這兩種偏壓所得到的不同的閘極寄生電阻,利用模擬軟體發現用不加偏壓所得到的寄生參數其模擬結果較符合實際量測結果。

    本論文的大信號模型主要以EEHEMT模型為主,再配合參數萃取軟體IC-CAP,利用元件的直流量測結果以及元件小信號參數隨元件偏壓的變化情形,萃取出大信號模型的相關參數,並利用ADS模擬軟體做模擬與量測值的比較。

    至於高頻雜訊模型,主要是利用小信號的等效電路,加入兩個雜訊溫度值來模擬預測元件高頻時的雜訊特性。

    This thesis is to build the device models for AlGaAs/InGaAs/GaAs pHEMT. The device models include small-signal model, large-signal model, and RF noise model.

    In the beginning, we use the Yang-Long measurement to extract the parasitic resistance, Rs, and the cold-FET measurement to extract the other parasitic parameters of small-signal model. After extracting parasitic parameters, we de-embed those parasitic parameters to get the intrinsic circuit of pHEMT. Finally, with the Y-parameters and mathematics, we can calculate the intrinsic parameters. In the cold-FET measurements, we apply two different gate voltages to simplify the circuit. One is strong forward gate bias and the other is zero gate bias. We find that the parameters extracted from the zero gate bias are more accurate than those extracted from the forward gate bias.

    We adopt EEHEMT model for large-signal model in this thesis. With DC measurements and small-signal parameters, the EEHEMT model parameters can be obtained by fitting. Finally, we use ADS simulation software to verify the extracted results.

    As for noise model, we add two noise temperatures to the intrinsic circuit of small-signal model. The noise temperature model allows prediction of noise parameters for pHEMT devices.

    Chapter 1 Introduction 1.1 An introduction to High Electron Mobility Transistors 1 1.2 Motivation of device modeling 2 1.3 Overview of this thesis 3 Chapter 2 Small-Signal Model 2.1 Introduction 8 2.2 Small-signal equivalent circuit 8 2.3 Extraction procedures 10 2.3.1 Extraction extrinsic parameters 10 2.3.1.1 Yang-Long measurement 10 2.3.1.2 Cold FET measurement 12 2.3.1.2.1 Forward gate bias condition 15 2.3.1.2.2 Zero gate bias condition 16 2.3.2 De-embedding 16 2.3.3 Extraction intrinsic parameters 17 2.4 Results and discussion 18 2.5 Summary 18 Chapter 3 Large-Signal Model 3.1 Introduction 39 3.2 Types of large-signal model 39 3.3 EEHEMT model 40 3.3.1 Drain-source current & gm compression parameters 41 3.3.2 Forward conduction and breakdown parameters 44 3.3.3 Dispersion current parameters 45 3.3.4 Charge parameters 45 3.4 Large-signal model parameter extraction 47 3.4.1 DC measurements 47 3.4.2 AC measurements 48 3.5 Simulation results and discussion 48 3.6 Summary 48 Chapter 4 Noise Model 4.1 Introduction 68 4.2 Types of noise 68 4.2.1 Thermal noise 69 4.2.2 Shot noise 70 4.2.3 Generation-recombination noise 70 4.2.4 Flicker noise 71 4.3 Noise model theory 72 4.3.1 Noise figure and noise parameters 72 4.3.2 Noise model in FET 73 4.4 Results and discussion 76 4.5 Summary 77 Chapter 5 Conclusion and Future Work 5.1 Conclusion 84 5.2 Future work 85

    [1] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “ Electron mobilities in modulation-doped semiconductor heterojunction superlattices” Appl. Phys. Lett. 33(7), pp665-667, October 1987
    [2] Robert Anholt, “ Electrical and Thermal Characterization of MESFETs, HEMTs, and HBTs”.
    [3] W. Liu, “ Fundamentals of III-V Devices” John Wiely & Sons Inc. 1999
    [4] V. Guru, J. Jogi, M. Gupta, H. P. Vyas, and R. S. Gupa “An improved intrinsic small-signal equivalent circuit model of delta-doped AlGaAs/InGaAs/GaAs HEMT for microwave frequency applications” Microwave and optical technology letters, vol. 37, No. 5, pp376-379, June 5 2003
    [5] J. Micheal Golio “microwave MESFETs & HEMTs” Artech House, Inc. 1991.
    [6] G. Dambrine, A. Cappy, F. HeLiodore, and E. Playez, ”A New Method for Determining the FET Small-Signal Equivalent Circuit“ IEEE MTT VOL. 36, NO. 7, pp.1151-1159, JULY 1988
    [7] Long Yang and Stephen I. Long, ” New Method to Measure the Source and Drain Resistance of the GaAs MESFET”,IEEE Electron Device Letters,VOL.7, NO.2, pp. 75-77, Feb 1986
    [8]K. W. Lee, K. Lee, M. S. Shur, Tho T. Vu, P. C. T. Roberts, and M. J. Helix, “ Source, drain and gate series resistances and electron saturation velocity in ion implanted GaAs FET’s,” IEEE Trans. Electron Devices, vol. ED-32, pp. 987-992, May 1985
    [9]R. Anholt and S. Swirhun “Equivalent-Circuit Parameter Extraction for Cold GaAs MESFET’s” IEEE Trans. On Microwave Theory and Techniques, Vol. 39, NO. 7, pp1243-1247, JULY 1991
    [10]N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, “Accurate Small-Signal Modeling of HEFT’s for Millimeter-Wave Applicaions” IEEE Trans. On Microwave Theory and Techniques, Vol. 44, NO. 3, pp. 432-437, March 1996
    [11]W. R. Curtice, and M. Ettenberg. “ A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers” IEEE Trans. On Microwave Theory and Techniques, Vol. 33, NO. 12, pp1383-1394, DECEMBER 1985
    [12] J. Michael Golio, “RF and microwave semiconductor device handbook”, Boca Raton :CRC Press,c2003
    [13] S.M. Sze, ”Semiconductor devices, physics and technology”, New York :Wiley,c2002
    [14] W. R. Curtice,” A MESFET Model for Use in the Design of GaAs Integrated Circuits”, IEEE Trans. On Microwave Theory and Techniques, Vol. 28, NO. 5, pp448-456, MAY 1980
    [15]HEWLETT PACKARD IC-CAP, ”High-frequency Model Tutorials, Vol.2”, copyright 1998
    [16]P. C. Canfield, “Modeling of frequency and temperature effects in GaAs MESFETs”, IEEE Journal of Solid-State Circuits, Vol. 25, pp299-306, Feb. 1990.
    [17]J. M.Golio, M. Miller, G. Maracus, and D.Johnson, “Frequency dependent electrical characteristics of GaAs MESFETs”, IEEE Trans. Elec. Devices, Vol.ED-37, pp.1217-1227, May 1990
    [18]HP EESOF DIVISION, HEWLETT PACKARD CO.: ‘An IC characterization and analysis program update’, Microwave Journal, pp 146-154, APIRL 1997.
    [19]R. Ludwig, P. Bretchko, 2000, RF Circuit Design - theory and applications, New Jersey, USA, Prentice Hall.
    [20]M. W. Pospieszalski, “Modeling of Noise Parameters of MESFET’s and MODEFET’s and Their Frequency and Temperature Dependency” IEEE Trans. On Microwave Theory and Techniques, Vol. 37, NO. 9, pp1340-1350, SEPTEMBER1989
    [21] H. Rothe and W. Dahlke, “ Thepry of Noisy Fourpoles” Proc. IRE, Vol. 44, pp. 811-818, June 1956
    [22]H. A. Hsus (chairman), “ Representation of Noise in Linear Two-Ports” Proc. IRE, Vol 48, pp. 69-74, January 1960
    [23] P. K Ikalainen, “ Extraction of Device Noise Sources from Measured Data Using Circuit Simulatior Software” IEEE Trans. On Microwave Theory and Techniques, Vol. 41, NO. 2, pp340-343, FEBRUARY1993

    下載圖示 校內:2008-06-22公開
    校外:2008-06-22公開
    QR CODE