| 研究生: |
吳忻璇 Wu, Hsin-Hsuan |
|---|---|
| 論文名稱: |
含多硫配位基之釩化合物的合成與鑑定及砷硫化合物與硒之反應探討 Syntheses and Characterization of Vanadium Complexes with Thiolate Ligands and Chemistry of Arsenic Thiolate Complexes Reacting with Selenium |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | 釩硫化合物 、砷硫化合物 |
| 外文關鍵詞: | vanadium-thiolate complexes, arsenic-thiolate complexes |
| 相關次數: | 點閱:134 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,主要著重在於探討釩硫化合物的釩化學和砷硫化合物與硒化物的相關化學反應。在釩化學的研究中,因釩金屬會抑制蛋白質酪氨酸磷酸脂酵素 (PTP) 的活性,其可能原因是釩金屬與 PTP 的半胱胺酸 (Cysteine) 作用,而產生抑制的效果,因此我們對釩硫之間的作用頗感興趣。而在砷硫化合物的研究中,我們主要動機是為了瞭解砷化物對人體的毒性。
在研究中,我們以RSiS3 [Tris(2-thiophenyl)silane] 為主要配位基,來探討釩金屬在多硫配位環境下的相關釩化學反應。我們獲得了二個雙核含氧釩四價的化合物,分別為 [VIV2O2(PhSiS2”O)2][PPh4]2 (1) 和 [VIV2O2(PhSiS2”O)2][Bu4N]2 (2) ,其結構中 {VO(μ2-OR)2VO}2+ 的二個 V=O 鍵的相對位置不相同,化合物 (1) 屬於syn-orthogonal 的組態,而化合物 (2) 屬於anti-orthogonal 的組態。此外,我也獲得釩三價化合物 [VIII2(μ-NNH)(N2H2)2(PhSiS2”O)2][PPh4]2Br (3)、[VIII2{[HNC(Me)]2C(CN)}2 (MeSiS2O2)][PPh4]2 (4) 和[VIII2{[HNC(Me)]2C(CN)}2(PhSiS2”O2)][PPh4]2 (5)。化合物 (3) 包含二種二氮烯鍵結於釩金屬上,分別為作為架橋基和末端取代基。化合物 (4) 和 (5) 結構中含有三個乙腈分子所組成的配位基。
在探討砷化物的研究中,我們著重在於研究生物系統中砷硫化合
物與硒化物之間的作用性,其有助於了解攝取適量的硒可有效地降低砷對於人體的傷害。因此為了瞭解砷硫化合物與硒之間的反應性以及鍵結方式,我們選用砷硫化合物 (AsS3, AsS3’) 與硒化合物反應,並藉由氫核和硒核的核磁共振光譜 (1H-NMR 和77Se-NMR) 和X光原子吸收光譜 (XAS) 來分析反應後的產物。
At this work, two themes were focused: the chemistry of vanadium-thiolate complexes and the chemistry of arsenic-thiolate complexes reacting with selenium species. The former was inspired by the protein-tyrosine phosphatese (PTP) which is inhibited by vanadate through the interaction with the Cys residue in the enzyme. The latter was motivated by understanding the toxicity of arsenic.
In our continuing efforts to study vanadium sulfur chemistry, Tris(2-thiophenyl)silane, [RSiS3], was utilized to react with vanadium ion at this particular project. Two dinuclear oxovanadium(IV) thiolate complexes, [VIV2O2(PhSiS2”O)2][PPh4]2 (1) and [VIV2O2(PhSiS2”O)2][Bu4N]2 (2), were isolated and characterized. Complexes 1 and 2 both contain the {VO(μ2-OR)2VO}2+ core unit. The arrangement of two V=O bonds are different for these two complexes, syn-orthogonal for 1 and anti-orthogonal for 2. In addition, three dinuclear vanadium(III) thiolate complex, [VIII2(μ-NNH)(N2H2)2(PhSiS2”O)2][PPh4]2Br (3), [VIII2{[HNC(Me)]2 C(CN)}2(MeSiS2O2)][PPh4]2 (4), and [VIII2{[HNC(Me)]2C(CN)}2 (PhSiS2”O2)][PPh4]2 (5) were also isolated. Complex (3) contains a bridged and terminal diazene ligands and complexes (4)-(5) have moiety obtained from the activation of CH3CN.
In the second part of this research, we focus on the synergy of arsenic-thiolate complexes and selenium in biosystem. Appropriate selenium intake could decrease the arsenic toxicity to human body efficiently. To understand the reactivity and bonding between arsenic-thiolate complexes and selenium, tris(thiolato)arsenic complexes (AsS3, AsS3’) were explored to react with Selenium species. The reaction mixtures were analyzed with the techniques of 1H-NMR, 77Se-NMR and X-ray absorption spectroscopy (XAS).
[1] P. Frank, K. Kustin, W. E. Robinson, L. Linebaugh, K. O. Hodgson, Inorg. Chem. 1995, 34, 5942.
[2] R. R. Eady, Chem. Rev. 1996, 96, 3013.
[3] Y. Sun, B. R. James, S. J. Rettig, C. Orvig, Inorg. Chem. 1996, 35, 1667.
[4] D. C. Crans, J. Inorg. Biochem. 2000, 80, 123.
[5] D. Rehder, Inorg. Chem. Commun. 2003, 6, 604.
[6] A. Messerschmidt, L. Prade, R. Wever, Biol. Chem. 1997, 378, 309.
[7] M. Weyand, H. J. Hecht, M. Kieß, M. F. Liaud, H. Vilter, D. Schomburg, J. Mol. Biol. 1999, 293, 595.
[8] M. N. Isupov, A. R. Dalby, A. A. Brindley, Y. Izumi, T. Tanabe, G. N. Murshudov, J. A. Littlechild, J. Mol. Biol. 2000, 299, 1035.
[9] W.-C. Chu, C.-C. Wu, H.-F. Hsu, Inorg. Chem. 2006, 45, 3164.
[10] a)H. H. Thorp, Inorg. Chem. 1992, 31, 1585; b)H. H. Murray, S.G.Novick, W.H.Armstrong, Cynthia.S.Day, J. Cluster Sci. 1993, 4, 439.
[11] Y.-F. Tsai, G.-S. Huang, C.-I. Yang, H.-L. Tsai, Y.-H. Liu, T.-S. Kuo, H.-F. Hsu, Inorg. Chem. 2007, 46, 10467.
[12] N. S. Dean, M. R. Bond, C. J. O'Connor, C. J. Carrano, Inorg. Chem. 1996, 35, 7643.
[13] K. K. Nanda, E. Sinn, A. W. Addison, Inorg. Chem. 1996, 35, 1.
[14] W. Plass, Angew. Chem. Int. Ed. 1996, 35, 627.
[15] A. S. Ceccato, A. Neves, M. A. d. Brito, S. M. Drechsel, A. S. Mangrich, R. Werner, W. Haase, A. J. Bortoluzzi, J. Chem. Soc., Dalton Trans. 2000, 1573
[16] A. Müller, F. Peters, M. T. Pope, D. Gatteschi, Chem. Rev. 1998, 98, 239.
[17] W. G. Klemperer, T. A. Marquart, O. M. Yaghi, Angew. Chem. Int. Ed. Engl. 1992, 31, 49
[18] C. Ting, M. S. Hammer, N. C. Baenziger, L. Messerle, J. Deak, S. Li, Organometallics 1997, 16, 1816
[19] F. A. Cotton, G. E. Lewis, G. N. Mott, Inorg. Chem. 1982, 21, 3316
[20] J. R. Rambo, J. C. Huffman, G. Christou, J. Am. Chem. Soc. 1989, 111, 8027
[21] S. L. Castro, M. E. Cass, F. J. Hollander, S. L. Bartley, Inorg. Chem. 1995, 34, 466
[22] D. L. Lewis, W. E. Hatfield, D. J. Hodgson, Inorg. Chem. 1972, 11, 2216
[23] E. Block, G. Ofori-Okai, J. Zubieta, J. Am. Chem. Soc. 1989, 111, 2327.
[24] a)C. L. Floc'h, R. A. Henderson, P. B. Hitchcock, D. L. Hughes, Z. Janas, R. L. Richards, P. Sobota, S. Szafert, J. Chem. Soc.,Dalton Trans 1996, 2755; b)C. L. Floc’h, R. A. Henderson, D. L. Hughes, R. L. Richards, J . Chem. Soc., Chem. Commun. 1993, 175.
[25] D. Sellmann, A. Hille, A. Rösler, F. W. Heinemann, M. Moll, G. Brehm, S. Schneider, M. Reiher, B. A. Hess, W. Bauer, Chem. Eur. J 2004, 10, 819.
[26] C. T. Saouma, P. Müller, J. C. Peters, J. Am. Chem. Soc. 2009, 131, 10358.
[27] H.-F. Hsu, W.-C. Chu, C.-H. Hung, J.-H. Liao, Inorg. Chem. 2003, 42, 7369.
[28] T.-Y. Cheng, A. Ponce, G. L. Hillhouse, A. L. Rheingold, Angew. Chem. Int. Ed. 1994, 33, 657.
[29] W. Liu, H. H. Thorp, Inorg. Chem. 1993, 32, 4102.
[30] María L. Durán, Jose A. García-Vázquez, C. Gómez, A. Sousa-Pedrares, J. Romero, A. Sousa, Eur. J. Inorg. Chem. 2002, 2002, 2348.
[31] M. R. Kopp, B. Neumüller, Z. Anorg. Allg. Chem 1999, 625, 739.
[32] E. Iravani, B. Neumuller, Organometallics 2003, 22, 4129.
[33] M. R. Kopp, T. Krauter, A. Dashti-Mommertz, B. Neumuller, Organometallics 1998, 17, 4226.
[34] G. D. Figuly, C. K. Loop, J. C. Martin, J. Am. Chem. Soc. 1989, 111, 654.
[35] C. R. Cornman, T. C. Stauffer, P. D. Boyle, J. Am. Chem. Soc. 1997, 119, 5986.
[36] K. T. Kitchin, Toxicol. Appl. Pharm. 2001, 172, 249.
[37] K. H. Antman, The Oncologist 2001, 6, 1.
[38] R. Nickson, J. McArthur, W. Burgess, K. M. Ahmed, P. Ravenscroft, M. Rahmanñ, Nature 1998, 395, 338.
[39] a)G. N. Schrauzer, D. A. White, C. J. Schneider, Bioinorg. Chem. 1977, 7, 23; b)H. E. Ganther, Carcinogenesis 1999, 20, 1657.
[40] A. L. Moxon, Science 1983, 88, 81.
[41] O. A. Levander, C. A. Baumann, Toxicology and Applied Pharmacology 1966, 9, 98.
[42] J. Gailer, G. N. George, I. J. Pickering, R. C. Prince, S. C. Ringwald, J. E. Pemberton, R. S. Glass, H. S. Younis, D. W. DeYoung, H. V. Aposhian, J. Am. Chem. Soc. 2000, 122, 4637.
[43] D. M. Smith, M. A. Pell, J. A. Ibers, Inorg. Chem. 1998, 37, 2340.
[44] D. M. Smith, C.-W. Park, J. A. Ibers, Inorg. Chem. 1996, 35, 6682.
[45] D. Thavarajah, A. Vandenberg, G. N. George, I. J. Pickering, J. Agric. Food Chem. 2007, 55, 7337.
[46] a)T. Birchall, R. J. Gillespie, S.L.Vekris, Canadian Journal of Chemistry 1964, 43, 1672; b)M. A. Lala, P. V. Ioannou, J. Inorg. Biochem. 2003, 97, 331.
校內:2020-12-31公開