| 研究生: |
鄭忠賢 Cheng, Chung-Hsiem |
|---|---|
| 論文名稱: |
不同鍍膜端銑刀對 SUS304 之銑削特性探討 An Investigation of milling process for SUS304 with end mills of different coatings |
| 指導教授: |
王俊志
Wang, J-J Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 切屑 、鍍膜 、磨耗 、端銑刀 |
| 外文關鍵詞: | end-mill, wear, coating, chip |
| 相關次數: | 點閱:81 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
由於TiN與TiCN膜層具有高硬度、低摩擦係數、耐腐蝕性等特質,所以廣泛被運用在刀具上。本論文主要是探討不同鍍膜層TiN、TiCN與未鍍膜刀具在不同的切削條件下,對銑削304不銹鋼時刀具磨耗分析、工件表面粗糙度探討。同時利用田口實驗方法(Taguchi Method)來規劃銑削實驗,瞭解不同鍍膜刀具與銑削加工條件等加工變異參數的交互作用為何。之後再以不同的切削速度、每刃進給,分別作銑削實驗來探討刀具磨耗及切屑型態。
而在本次田口法實驗當中三種可控銑削因子,對刀腹磨耗寬度及工件表面粗糙度影響,都是以不同鍍膜刀具銑削因子影響程度最大。同時實驗數據顯示,未鍍膜刀具磨耗量最大,TiCN鍍膜刀具磨耗量最小,且未鍍膜刀具磨耗量隨著時間的增長而增加,成正比關係。對於切削速度與進給量變更時,則明顯發現刀具磨耗量隨著切削速度與進給量增快而增大。其次切削速度對於切削後之切屑硬度及厚度是速度愈快兩者值愈高,並且切屑硬度及厚度與刀具磨耗量成正比關係。
Abstract
It’s widely used on tools due to TiN and TiCN coating featuring high hardness; low friction coefficient; anti-corrosiveness. The article is first mainly probing into tools with and without TiN, TiCN and without coating under different cutting condition while milling 304 stainless steel, its flank wear analysis and roughness of surface of workpiece. Second using Taguchi Method to design experiment in order to know the mutual function of variance parameter with different coating tool and mill machining condition. Finally, to experiment mill with different cutting speed and feed per flute in order to probe into wear of tool and chip type.
The three manageable mill factors in the Taguchi Method experiment, the influence of roughness of surface and flank wear of width with different coating tool mill factors with the most significant influence. At the meantime, according to the experiment data showing that uncoated tool would be with the largest attrition value, and tool coating with TiCN have the smaller attrition value. Therefore, wear of uncoated tool is proportional to the using time. When cutting speed and feed quantity changes, it shows obviously that wear tool would growing larger with the hingher speed of cutting and feeding. When cutting speed is faster, the value of hardness and thickness of the chip after cutting would be higher; and the hardness and thickness of the chip would be proportional to wear of the tool.
參考文獻
1 Shaw, Milton C., Metal Cutting Principle, Chapter 14, press, New York, 1984.
2 Stainless steel Turning, Catalogue C-1020; 6 Eng. Sandvik Coromant. Application Guide, UK (1996).
3 Norman, B., Schmidt,“New Standard in Machinable Stainless Steel,”American Machinist, pp. 91-94, 1995.
4 Turning Stainless Made Painless, Sandvik Coromant Co., Fair Lawn, NJ.
5 J. Lin, T. C., Chen and C. I. Weng,“Development of the infrared pyrometer with fiber optics for measuring cutting temperature at high speed cutting,”Symposium of Monitoring and control for Manfacturing Process, ASME PED, pp. 17-32, 44(1990).
6 F. F. Ling and E. Saibel,“On the tool life and temperature and relationship in metal cutting,”Trans. ASME Journal, pp. 1113-1117, 1995.
7 H. Tanaka, F. Obata, Y. Murakawa, S. Okamura and H. suji,“Machining Characteristics in End Milling of Hot Working Tool Steel,”International Conference on Precision Engineering, pp. 225-229, 1997.
8 J. Kopac,“Influence of cutting material and coating on tool quality and tool life,”Joural of Material Processing Technology, pp. 95-103, 1998.
9 G.E. D’Errico, E. Guglielm, G. Rutell:, “A study of coatings for end mills in high speed metal cutting,” Journal of Materials Processing Technology, 251-256, 1999.
10 Laizhu, J., Hannu, H., Jukka, P., and Veijo, K.,“Active Wear and Failure Mechanisms of TiN-Coated High Speed Steel and TiN-Coated Cemented Carbide Tools When Machining Powder Metallurgically Made Stainless Steels, ” Metallurgical and Materials Transactions A, Vol. 27A, pp. 2796-2808, 1996.
11 Sukura, K. Adachi, K. and Hanasaki, S., “Effect of Carbon Content of Austenitic stainless steel on Drill Life,” Third International Conference on Progress of Cutting and Grinding, Osaka, pp. 284-289, 1996.
12 Vigneau, J. and Boulanger, J. J., “Behaviour of Ceramic Tools During Machining Nickel Base Alloys,” Annals of CIRP, Vol. 31/1, pp. 35-39, 1982.
13 Routio. M., M. Saynatjoki,“Tool Wear and Failure in the Drilling of Stainless Steel,”Journal of Materials ProcessingTechnology, Vol. 74-75, pp. 375-381, 1995.
14 Sullivan K. F., Wright P. K. and Smith P. D.,“Metallurgical Appraisal of Instabilities Arising in Machining,”Metals Technology, Vol. 5. part6, pp. 181-189, 1997.
15 Su, Y. L., Yao, S. H., Wei, C. S. and Wu. C. T.,“Analysis and Design of a WC Milling Cutter with TiCN Coating,”Wear. Vol. 215, No. 1, PP. 59-66, 1998.
16 F. W. Taylor,“On the art of cutting metals,”Trans. ASME, pp. 28-31, 1906.
17 L. Ahman, S. Hogmark,“Wear of high speed steel milling tools,”Scandinavian Journal of Metallurgy, pp. 35-991, 1985.
18 M. Lahres, G. Jorgensen,“Properties and dry cutting performance of diamond-coated tools,”Surface and Coating Technology, p. 505, 1994.
19 和立聯合科技股份有限公司 刀具型錄
20 L. V. Colwell,“Predicting the Angle of Chip Flow for Sigle-point Cutting tools,”Trans of the ASME, p. 199, 1954.
21 林維新、紀松水編譯,切削理論,全華科技圖書股份有限公司,民國76年12月。
22 李正中編著,薄膜光學與鍍膜技術,藝軒圖書出版社,民國88年十二月。