簡易檢索 / 詳目顯示

研究生: 張耕銘
Chang, Keng-Ming
論文名稱: 氧化鋅-氧化鉍複層薄膜之微結構與非歐姆性質之研究
The Study of the Microstructures and Non-ohmic Properties of the ZnO-Bi2O3 Multilayer
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 109
中文關鍵詞: 變阻器氧化鋅
外文關鍵詞: varistors, ZnO
相關次數: 點閱:45下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本實驗中利用射頻磁控濺鍍的方式製作氧化鋅-氧化鉍複層,並探討其非歐姆性質。其結果發現非歐姆性質受其複層中的組成以及微結構所影響,如藉由氧化鉍層之濺鍍氧分壓調整其微結構及組成,可控制氧化鋅-氧化鉍複層之啟動電壓;除此之外亦可透過添加鋁雜質或改變氧化鋅層之濺鍍氧分壓,調整氧化鋅層之載子濃度亦可控制其複層的啟動電壓,本實驗中啟動電壓的變化範圍為26.5V至4.3V。當氧化鋅層載子濃度因添加鋁雜質而提高時,會降低其氧化鋅-氧化鉍複層之非線性係數以及增加漏電流,此現象可藉由於氧化鋅-氧化鉍界面處加入一層ZnO:Co層改善,本實驗中獲得最高之非線性係數為44.15。

      The thin film varistors of ZnO-Bi2O3 multilayer junctions were fabricated by RF sputtering. The nonlinear I-V characteristics and nonlinear coefficient, α, under reverse bias were found to be effected by the composition and structure of the varistor multilayers. The threshold voltage is predominantly determined by the microstructure and thickness of the Bi2O3 layer in thin film varistors, while that can be tuned by altering the donor density in ZnO, which was achieved by varying Al doping concentration or sputtering conditions. The threshold voltages of the device can be adjusted from 26.5V to 4.3V. The higher leakage current and lower nonlinear coefficient associated with the ZnO layer doped with Al (ZnO:Al) can be improved by inserting another ZnO layer doped with selective transition metal impurities between ZnO:Al and Bi2O3 layers. The highest nonlinear coefficient in this thesis is 44.15. The microstructure and defects of the multilayers were investigated in detail and related to the performance of the electrical properties.

    摘要…………………………………………………………………I abstract…………………………………………………………………II 目錄 ……………………………………………………………………III 表目錄 …………………………………………………………………IV 圖目錄 …………………………………………………………………X 第一章 緒論 1-1 前言……………………………………………………………………1 1-2 研究動機及目的………………………………………………………5 第二章 理論基礎與文獻回顧 2-1氧化鋅微結構……………………………………………………………7 2-2氧化鋅變阻器之結構……………………………………………………7 2-3 氧化鋅變阻體非線性I-V曲線機制………………………………11 2-3-1 含有晶粒介面層之雙層蕭基能障模型…………………………11 2-4 影響氧化鋅變阻體非歐姆性質之因素……………………………22 2-5 氧化鋅變阻體界面態之形成………………………………………32 2-6 氧化鋅薄膜型變阻體………………………………………………33 2-7 前人相關研究………………………………………………………34 第三章 實驗方法及步驟 3-1 氧化鋅與氧化鉍薄膜製作流程……………………………………37 3-2 系統設計……………………………………………………………37 3-3 原料選擇……………………………………………………………38 3-4 氧化鋅及氧化鉍鍍膜步驟與參數…………………………………43 3-5 氧化鋅薄膜變阻器製作流程………………………………………45 3-6 氧化鋅薄膜變阻器製作步驟與參數………………………………46 3-7 薄膜分析……………………………………………………………47 3-7-1 α-Step……………………………………………………………47 3-7-2四點探針……………………………………………………………47 3-7-3 掃描式電子顯微鏡………………………………………………48 3-7-4 穿透式電子顯微鏡………………………………………………48 3-7-5 X光繞射儀…………………………………………………………49 3-7-6 X光光電子能譜儀…………………………………………………49 3-7-8 電性量測I-V及非線性係數α值…………………………………49 3-7-9 深阱能階暫態光譜………………………………………………50 第四章 結果與討論 4-1氧化鋅及氧化鉍靶材…………………………………………………53 4-2 濺鍍參數對氧化鋅薄膜之影響……………………………………56 4-2-1 X光繞射分析………………………………………………………56 4-2-2 氧化鋅薄膜電阻率量測…………………………………………62 4-2-3 表面型態觀察……………………………………………………64 4-3濺鍍參數對氧化鉍薄膜之影響………………………………………66 4-3-1 X光繞射分析………………………………………………………66 4-3-2 X光光電子能譜分析………………………………………………71 4-4氧化鋅-氧化鉍複層…………………………………………………73 4-4-1 氧化鋅與電極間之接面性質……………………………………73 4-4-2 氧化鉍層濺鍍氧分壓對氧化鋅-氧化鉍非歐姆行為之影響……76 4-4-3 氧化鋅層添加雜質鋁隨濺鍍氧分壓對非歐姆性質之影響……84 4-4-4氧化鋅-氧化鉍界面處添加雜質鈷隨氧分壓改變之影響………90 4-4-5 氧化鉍層組成對非歐姆性質之影響……………………………96 第五章 結論………………………………………………………104 第六章 參考資料…………………………………………………106

    1. T. K. Gupta, J. Am. Ceram. Soc. 73 1817(1990)
    2. 汪建民主編, 陶瓷技術手冊, 中華民國粉末冶金協會
    3. M. Michio, J. Appl. Phys. Japan, 10 736(1971)
    4. E. Olsson, G. Dunlop, R. Osterlund, J. Amer. Cera. Soc. 76, 65(1993)
    5. G.D.Mahan, J. Appl. Phys. 54 3825(1983)
    6. Y.-C. Chen, et. al, J. Mat. Sci. 27 B97(1992)
    7. K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films 102 1(1983)
    8. K. H. Kim, T. S. Park, J. Korean Phys. Soc. 18 124(1985)
    9. L.M. Levinson; Electronic Ceramics-Properties, Devices and Applications, Marcel Pekker, New York(1988)
    10. K. Eda, IEEEE Electrical Insulation Magazine, 5 28(1989)
    11. K. Eda, IEEEE Electrical Insulation Magazine, 5 28(1989)
    12. M. Matsuoka, Jpn. J. Appl. 10 736 (1971)
    13. Liomel M. Levinson and H.R. Philipp, J. Appl. Phys. 46, 1332 (1975)
    14. J. Bernasconi, S.Strässler, B. Knecht, H.P. Klein and A. Menth, Solid State Communication, 21 876 (1977)
    15. Kazuo Eda, J. Appl. Phys. 49 2964(1978)
    16. M. Matsuura and H. Yamaoki, Jpn. J. Appl. Phys. 195 16(1976)
    17. K. Eda and M. Matsuoka, Jpn. J. Appl. Phys. 16 1261 (1977)
    18. P. L. Hower and T. K. Gupta, J. Appl. Phys. 50 4847(1979)
    19. P. R. Emtage, J. Appl. Phys., 48 4372(1977)
    20. G. E. Pike and C. H. Seager, J. Appl. Phys. 50 3414 (1979)
    21. M. Ieda, Y. Suzuoki, M. Nakagawa, and T. Mizutani, IEEE Transactions on Electrical Insulation, 25 590 (1990)
    22. J. P. Gambino, W. D. Kingery, H.R. Philipp, and Liomel M. Levinson, Grain boundary electronic states in some simple varistors, J. Appl. Phys., 61 2571(1987)
    23. R. A. Winston and J. F. Cordaro, J. Appl. Phys., 68 6495(1990)
    24. T. maeda, S. Meguro and M. Takata, Jpn. J. Appl. Phys., 28 L714(1989)
    25. F. Stucki, and F. Greuter, Appl. Phys. Lett., 30 446(1990)
    26. S. Fujisu, H. Toyoda, and H. Yanagida, Communications of the American Ceramic Society, 70 C71(1987)
    27. E. Sonder and M. M. Austin, J. Appl. Phys., 54 3566(1983)
    28. M. Hayashi, M. Kuramoto, Advances in Varistor Technology, ed. L. M. Levinson (American Ceramic Society, Westerville, 1989) p.364
    29. Y. Yano, Y. Takai, and H. Morooka, J. Mater. Res., 9 112(1994)
    30. F. Oba, I. Tanaka, and H. Adachi, Jpn. J. Appl. Phys., 38 3569(1999
    31. L. F. Lou, J. Appl. Phys. 50 555 (1979)
    32. Yasuo Suzuoki, Akira Ohki, Teruyoshi Mizutani, and Masayuki Idea, J. Phys. D: Appl. Phys. 20 551(1987)
    33. Y. Yano, Y. Shirakawa, and H. Morooka, J. Mater. Res. 9 669(1994)
    34. Y. Yano, H. Morooka, Jpn. J. Appl. Phys., 102 303(1993
    35. N Horio, M Hiramatsu, M Nawata, K. Imaeda, and T. Torii, Vacuum 51 719(1998)
    36. J. M. Ting, B. S. Tsai, Material Chemistry and Physics, 72 273 (2001)
    37. K. Tominaga, M. Kataoka, H. Manabe, T. Ueda, and I. Mori, Thin Solid Films, 290 84(1996)
    38. S. Takada, J. Appl. Phys. 73 4739(1993)
    39. Y. Igasaki, and H. Saito, J. Appl. Phys. 70 3613(1991)
    40. Van der Drift, Philips Res. Rep, 22 267(1967)
    41. R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83 1087(1998)
    42. K. Ellmer, K. Diesner, R. Wendt, Polycrystalline semiconductors IV: Physics, chemistry and Technology, 541 (1995)
    43. K. Ellmer, F. Kudella, R. Mientus, R. Schieck, and S. Fiechter, Thin Solid Films, 247 15(1994)
    44. T. Minami, H. Saito, T. Sonoda, H. Nanto, S. Takata, Thin Solid Films, 171 307(1989)
    45. P. Shuk, H. D. Wiemhofer, U. Guth, W, Gopel, and M. Greeblatt, Solid State Ionics, 89 179 (1996)
    46. H. J. Osten, E. Bugiel, and J. Klatt, Appl. Phys. Lett. 61 1918(1992)

    下載圖示 校內:2009-07-21公開
    校外:2009-07-21公開
    QR CODE