| 研究生: |
周承毅 Chou, Cheng-Yi |
|---|---|
| 論文名稱: |
探討利用表面聲波微流體晶片製備核殼微粒 Fabrication of core-shell microparticles by using reusable traveling surface acoustic wave microchips |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 微流體 、核殼微粒 、表面聲波 、聚二甲基矽氧烷 、油水界面 |
| 外文關鍵詞: | microfluidic, core-shell particles, surface acoustic wave, polydimethylsiloxane, oil-water interface |
| 相關次數: | 點閱:89 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核殼粒子因其在許多領域廣泛應用而受到關注,例如生物醫學應用、催化、電子學、光子晶體、藥物遞送、組織工程等。殼的合成方法有很多,例如化學合成、化學氣相沉積、自組裝、膠體聚集、膜沉積和生長等。據文獻指出,相較於批次反應,以微流體製備核殼粒子具有控制其結構和性能的優點,並且能簡化步驟。而目前使用微流體技術製備核殼粒子大多是利用磁力、慣性力或是液滴微流體,利用磁力、流體力學或液滴的方式往往需要對粒子本身進行一些前處理或是針對不同的粒子需要不同的流道設計,而這些前處理可能會破壞某些粒子特性,若通入粒子為細胞,這些處理可能會毀損細胞,因此我們利用單邊指叉狀(interdigital transducer, IDT)電極在壓電材料上產生表面聲波(surface acoustic wave , SAW)的方式,讓聲波傳遞至流道內並且推動粒子橫跨多層流道,粒子藉此在不同溶液中反應,利用聲波的特性就不須對於粒子或細胞進行預先標記或是表面處理,也不會對微粒子有任何的汙染,這樣的方法幾乎適用於所有微粒子。
本研究旨在探討如何利用聲波微流體晶片使粒子在單一流道內進行橫向移動,並嘗試在PS粒子表面進行反應生長出一層金殼,以及找出最適合的操作參數。結果顯示,利用微流體晶片製備的PS-Au核殼微粒表面比批次製備的更為光滑平順,微粒之間的均勻性佳,並且可以妥善保存於正十二烷中。
In this study, surface acoustic wave microchips were used to move particles laterally through different streams such that a layer of gold were formed on the surface of polystyrene particles. The results showed that, using single-phase-flow approach, formation of the gold on the particle surface was sporadic and not uniform. This could be due to depletion of the reaction agents on the surface of particles. On the contrary, the two-phase-flow approach (i.e. liquid-oil), allows formation of the gold shell on the particles to be smooth and uniform. Also, increasing the concentration of reducing agent decrease the reaction time.
1. Shi, J., et al. Surface acoustic wave (SAW) induced patterning of micro beads in microfluidic channels. in 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems. 2008. IEEE.
2. Li, H., J.R. Friend, and L.Y. Yeo, A scaffold cell seeding method driven by surface acoustic waves. Biomaterials, 2007. 28(28): p. 4098-4104.
3. Rayleigh, L., On waves propagated along the plane surface of an elastic solid. Proceedings of the London mathematical Society, 1885. 1(1): p. 4-11.
4. Olivadoti, G., Sensing, analyzing, and acting in the first moments of an earthquake. Analog Dialogue, 2001. 35(1): p. 1-3.
5. White, R. and F. Voltmer, Direct piezoelectric coupling to surface elastic waves. Applied physics letters, 1965. 7(12): p. 314-316.
6. Matthias, B. and J. Remeika, Ferroelectricity in the ilmenite structure. Physical Review, 1949. 76(12): p. 1886.
7. King, L.V., On the acoustic radiation pressure on spheres. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1934. 147(861): p. 212-240.
8. Destgeer, G., et al., Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab on a Chip, 2013. 13(21): p. 4210-4216.
9. Skowronek, V., et al., Particle deflection in a poly (dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Analytical chemistry, 2013. 85(20): p. 9955-9959.
10. Shi, J., et al., Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip, 2011. 11(14): p. 2319-2324.
11. Kerbel, S. Design of harmonic surface acoustic wave (SAW) oscillators without external filtering and new data on the temperature coefficient of quartz. in 1974 Ultrasonic Symposium Proceedings. 1974.
12. Saiki, T., K. Okada, and Y. Utsumi, Highly efficient liquid flow actuator operated by surface acoustic waves. Electronics and Communications in Japan, 2011. 94(10): p. 10-16.
13. Jung, J.H., et al., On-demand droplet splitting using surface acoustic waves. Lab on a Chip, 2016. 16(17): p. 3235-3243.
14. Destgeer, G., et al., Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab on a Chip, 2016. 16(4): p. 660-667.
15. Skowronek, V., R.W. Rambach, and T. Franke, Surface acoustic wave controlled integrated band-pass filter. Microfluidics and Nanofluidics, 2015. 19(2): p. 335-341.
16. Ang, K.M., et al., Nozzleless spray cooling using surface acoustic waves. Journal of Aerosol Science, 2015. 79: p. 48-60.
17. Liu, S., et al., Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields. Sensors, 2017. 17(7): p. 1664.
18. Wiklund, M., R. Green, and M. Ohlin, Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab on a Chip, 2012. 12(14): p. 2438-2451.
19. Mahon, S. and R. Aigner. Bulk acoustic wave devices–why, how, and where they are going. in CS Mantech Conference. 2007.
20. Löbl, H., et al., Materials for bulk acoustic wave (BAW) resonators and filters. Journal of the European Ceramic Society, 2001. 21(15): p. 2633-2640.
21. Shi, J., et al., Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip, 2009. 9(23): p. 3354-3359.
22. Yosioka, K. and Y. Kawasima, Acoustic radiation pressure on a compressible sphere. Acta Acustica United with Acustica, 1955. 5(3): p. 167-173.
23. Shi, J., et al., Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab on a Chip, 2008. 8(2): p. 221-223.
24. Devendran, C., et al., Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW. RSC advances, 2016. 6(7): p. 5856-5864.
25. Fakhfouri, A., et al., Surface acoustic wave diffraction driven mechanisms in microfluidic systems. Lab on a Chip, 2018. 18(15): p. 2214-2224.
26. Galogahi, F.M., et al., Core-shell microparticles: Generation approaches and applications. Journal of Science: Advanced Materials and Devices, 2020.
27. Hayes, R., et al., Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. Journal of chromatography A, 2014. 1357: p. 36-52.
28. Kumar, P., et al., Ion beam synthesis of Ni nanoparticles embedded in quartz. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2008. 26(4): p. L36-L40.
29. Dodd, A.C., A comparison of mechanochemical methods for the synthesis of nanoparticulate nickel oxide. Powder technology, 2009. 196(1): p. 30-35.
30. Ghosh Chaudhuri, R. and S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews, 2012. 112(4): p. 2373-2433.
31. Topete, A., et al., Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS nano, 2014. 8(3): p. 2725-2738.
32. Shi, W., et al., Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir, 2005. 21(4): p. 1610-1617.
33. Chatterjee, K., et al., Core/shell nanoparticles in biomedical applications. Advances in colloid and interface science, 2014. 209: p. 8-39.
34. Zhao, Q., et al., Simple and sensitive quantification of microRNAs via PS@ Au microspheres-based DNA probes and DSN-assisted signal amplification platform. ACS applied materials & interfaces, 2018. 10(4): p. 3324-3332.
35. Zhou, J., et al., Controllable synthesis and catalysis application of hierarchical PS/Au core–shell nanocomposites. Journal of colloid and interface science, 2012. 387(1): p. 47-55.
36. Zhang, M., et al., Core–shell and asymmetric polystyrene–gold composite particles via one-step pickering emulsion polymerization. Langmuir, 2014. 30(1): p. 75-82.
37. Li, Y., et al., Facile synthesis of polystyrene/gold composite particles as a highly active and reusable catalyst for aerobic oxidation of benzyl alcohol in water. RSC Advances, 2014. 4(47): p. 24769-24772.
38. Lee, H., et al., Highly stretchable and transparent supercapacitor by Ag–Au core–shell nanowire network with high electrochemical stability. ACS applied materials & interfaces, 2016. 8(24): p. 15449-15458.
39. Kim, C.K., et al., A novel method to prepare Cu@ Ag core–shell nanoparticles for printed flexible electronics. Powder Technology, 2014. 263: p. 1-6.
40. Graf, C. and A. van Blaaderen, Metallodielectric colloidal core− shell particles for photonic applications. Langmuir, 2002. 18(2): p. 524-534.
41. Esquivel-Castro, T.A., et al., Porous aerogel and core/shell nanoparticles for controlled drug delivery: a review. Materials Science and Engineering: C, 2019. 96: p. 915-940.
42. He, D., et al., Core–shell particles for controllable release of drug. Chemical Engineering Science, 2015. 125: p. 108-120.
43. Perez, R.A. and H.-W. Kim, Core–shell designed scaffolds for drug delivery and tissue engineering. Acta biomaterialia, 2015. 21: p. 2-19.
44. Hagit, A., et al., Synthesis and characterization of dual modality (CT/MRI) core− shell microparticles for embolization purposes. Biomacromolecules, 2010. 11(6): p. 1600-1607.
45. Song, Y., et al., In situ redox microfluidic synthesis of core–shell nanoparticles and their long-term stability. The Journal of Physical Chemistry C, 2013. 117(33): p. 17274-17284.
46. Gomez, L., et al., Facile synthesis of SiO 2–Au nanoshells in a three-stage microfluidic system. Journal of Materials Chemistry, 2012. 22(40): p. 21420-21425.
47. Tsai, S.S., et al., Conformal coating of particles in microchannels by magnetic forcing. Applied Physics Letters, 2011. 99(15): p. 153509.
48. Moon, B.-U., et al., Microfluidic conformal coating of non-spherical magnetic particles. Biomicrofluidics, 2014. 8(5): p. 052103.
49. Lan, W., et al., Synthesis of titania–silica core–shell microspheres via a controlled interface reaction in a microfluidic device. Langmuir, 2011. 27(21): p. 13242-13247.
50. 廖廷瑋, 探討聯結層之作用於可重複使用之聲波微流體晶片. 成功大學化學工程學系學位論文, 2018: p. 1-97.
51. Sood, A., et al., Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. Journal of Experimental Nanoscience, 2016. 11(5): p. 370-382.
52. Khademi, M., S.S.Y. Cheng, and D.P. Barz, Charge and Electrical Double Layer Formation in a Nonpolar Solvent Using a Nonionic Surfactant. Langmuir, 2020. 36(19): p. 5156-5164.
53. Luty‐Błocho, M., M. Wojnicki, and K. Fitzner, Gold nanoparticles formation via Au (III) complex ions reduction with L‐ascorbic acid. International Journal of Chemical Kinetics, 2017. 49(11): p. 789-797.