| 研究生: |
林咸仁 Lin, Hsien-Jen |
|---|---|
| 論文名稱: |
改良線性鑑別式分析在少量訓練樣本下之人臉辨識研究 On Improving Linear Discriminant Analysis for Face Recognition with Small Sample Size Problem |
| 指導教授: |
簡仁宗
Chien, Jen-Tzung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 主成分分析 、訓練樣本數不足問題 、線性鑑別式分析 、人臉辨識 |
| 外文關鍵詞: | Small Sample Size Problem, Linear Discriminant Analysis, PCA, Principal Components Analysis, Face Recognition, LDA |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在人臉辨識的相關研究中,線性鑑別式分析(Linear Discriminant Analysis,LDA)是一種常見的線性轉換技術,可以求出一組具鑑別性的特徵參數。然而這個方法在訓練樣本數不足(small sample size)時,會因為矩陣的奇異性問題,而導致無法實現。針對這個問題,本篇論文提出一種改良式的線性鑑別式分析方法:先將原始的特徵參數經由線性轉換投射至一個保留相同散佈程度的特徵空間,在此空間內的類別內散佈矩陣(Within-class scatter matrix)沒有奇異性(Singularity)的問題。若原始類別內散佈矩陣的秩(Rank)為r,則該轉換矩陣是由原始類別內散佈矩陣前r大特徵值所對應之特徵向量所組成。最後再對新的特徵參數做線性鑑別式分析。經由五種不同人臉資料庫實驗的結果,我們可以發現在樣本數目足夠的情形下,辨識率明顯地比原始的LDA提昇許多,而在訓練樣本數不足時也在較少的訓練成本下能維持不錯的辨識效果。
In the literature of face recognition, LDA (Linear Discriminant Analysis) is a popular linear transformation technique to extract the discriminant feature vector. However, this technique may occur the singularity problem on calculating the inverse of the within-class scatter matrix when the training sample size is small. To overcome the problem, an improved linear discriminant analysis is proposed in this thesis. The proposed method aims to transform the original feature vector to a new feature space with the same degree of scattering and without the singularity problem. Then, We use the LDA to extract the new feature vector. In the experiments on five face databases, the results show that the recognition rates of the proposed method is significantly better than other LDA-based techniques when training data are sufficient. In case of very limited training data, the proposed method achieves desirable recognition performance with moderate training cost.
[1] A. Averbuch , D. Lazar , and M. Israeli , ”Image Compression Using Wavelet Transform and Multiresolution Decomposition”, IEEE Trans. Image Processing, Vol. 5 1 , Jan. 1996 , pp.4 –15
[2] W.A. Barrett , ”A survey of face recognition algorithms and testing results”, Thirty-First Asilomar Conf. Signals, Systems & Computers, Vol. 1, pp.301 -305 , 1998
[3] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.19, no.7, pp.711 –720, July 1997.
[4] R. Brunelli , and T. Poggio , “Face recognition: Features versus Templates “ . IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.15, no.10, pp.1042-1052, Oct. 1993 .
[5] L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu, “A new LDA-based face recognition system which can solve the small sample size problem”, Pattern Recognition, Vol.33, no.10, pp.1713-1726, 2000.
[6] J.T. Chien, and C.C. Wu, “Discriminant waveletfaces for face recognition”, Conf. of Computer Vision and Graphic Image Processing (CVGIP), Pingtung-Taiwan, Aug. 2001.
[7] I. Craw , N. Costen , T. Kato , and S. Akamatsu , ”How Should We Represent Faces for Automatic Recognition?”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.21,no. 8 , pp.725 –736 , Aug. 1999
[8] S. Eickeler , S. Muller , and G. Rigoll , ” High Quality Face Recognition in JPGE Compressed Images”, ICIP 99, Vol.1, pp.672 -676 , 1999
[9] K. Etemad, and R. Chellappa, “Discriminant Analysis for Recognition of Human Face Images”, J. Opt. Soc. Amer. A, Vol.14, pp.1724-1733, 1997
[10] K. Fukunaga, “Introduction to Statistical Pattern Recognition”, Academic Press, second edition, 1991.
[11] F. Goudail, E. Lange, T. Iwamoto, K. Kyuma, and N. Otsu, "Face recognition system using local autocorrelations and multiscale integration", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.18, no.10, pp.1024-1028, 1996.
[12] D.B. Graham , and N.M. Allinson , ” Face Recognition from Unfamiliar Views : Subspace Methods and Pose Dependency”, Proc. Third IEEE Int’l Conf. Automatic Face and Gesture Recognition, pp. 348 –353,1998
[13] R. Hellappa , C.L. Wilson , and S. Sirohey , ” Human and Machine Recognition of Faces : A Survey”, Proc. IEEE, Vol. 83, no. 5 , pp.705 –741, May 1995
[14] Z.Q. Hong, and J.Y. Yang, “Optimal discriminant plane for a small number of samples and design method of classifier on the plane”, Pattern Recognition, Vol.24, no.4, pp.317-324, 1991.
[15] Z. Jin, J.Y. Yang, Z.S. Hu, and Z. Lou, “Face recognition based on the uncorrelated discriminant transformation”, Pattern Recognition, Vol.34, no.7, pp.1405-1416, 2001.
[16] A.Z. Kouzani, F. He, K. Sammut, and A. Bouzerdoum, “Illumination Invariant Face Recognition”, IEEE Int’l Conf. on Systems, Man, and Cybernetics, Vol.5, pp.4240 –4245, 1998
[17] S. Lawrence, C.L. Giles, A.C. Tsoi, and A.D. Back, “Face recognition: a convolutional neural-network approach” . IEEE Trans. Neural Networks, Vol.8, no.1, pp.98-113, Jan. 1997.
[18] S.J. Lee, S.B. Jung, J.W. Kwon, and S.H. Hong, ”Face Detection and Recognition Using PCA”, Proc. IEEE Region 10 Conf. TENCON 99, Vol.1, pp. 84-87, 1999
[19] W.S. Lee, H.J. Lee, and J.H. Chung, “Wavelet-Based FLD for Face Recognition”, Proc. IEEE Midwest Symp. on Circuits and Systems, Lansing MI, pp. 734-737, Aug. 2000
[20] S.Z. Li, and J. Lu, ”Face Recognition Using the Nearest Feature Line Method”. IEEE Trans. Neural Networks, Vol.10, no.2, pp. 439-443, March 1999
[21] S.H. Lin, S.Y. Kung, and L.J. Lin, ”Face recognition/detection by probabilistic decision-based neural network”. IEEE Trans. Neural Networks, Vol.8, no.1, pp.114-132, Jan. 1997 .
[22] C. Liu, and H. Wechsler, “Enhanced Fisher linear discriminant models for face recognition”, Proc. of IEEE Int’l conf. on Pattern Recognition, Vol.2, pp.1368 –1372, 1998.
[23] C. Liu, and H. Wechsler, “Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition”, Proc. of IEEE Trans. on Image Processing, Vol.11, pp.467- 476, 2002.
[24] K. Liu, Y.Q. Cheng, J.Y. Yang, and X. Liu, “Algebraic feature extraction for image recognition based on an optimal discriminant criterion”, Pattern Recognition, Vol.26, no.6, pp.903-911, 1993.
[25] M. Loog, R.P.W. Duin, and R. Haeb-Umbach, “Multiclass linear dimension reduction by weighted pairwise Fisher criteria”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.23, Issue 7, pp.762 –766, July 2001.
[26] E. Lizama , D. Waldoestl , and B. Nickolay, “An Eigenfaces-Based Automatic Face Recognition System”, IEEE Conf. on Systems, Man, and Cybernetics, Vol.1, pp. 174 -177, 1997
[27] B. Moghaddam, and A. Pentland, “Probabilistic Visual Learning for Object Representation”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.19 no.7, pp.696 –710, July 1997
[28] M. Nagao, M. Yamamoto, K. Suzuki, and A. Ohuchi , “MTS Approach to Facial Image Recognition”. Proc. IEEE Conf. On Systems, Man, and Cybernetics. Vol.4, pp. 937-942, 1999.
[29] M. Ordowski, and G.G.L. Ordowski, “Geometric linear discriminant analysis”, Proc. of IEEE Int’l conf. on Acoustics, Speech, and Signal Processing, Vol.5, pp.3173 –3176, 2001.
[30] Raghuveer M. Rao, and Ajit S. Bopardikar, “Wavelet transforms : introduction to theory and applications”, Addison Wesley Longman, July 1998.
[31] E.J. Stollnitz , A.D. DeRose , and D.H. Salesin, “Wavelets for Computer Graphics : A Primer ,Part 1”, IEEE Computer Graphics and Applications, Vol.15, no. 3, pp.76 –84, May 1995
[32] E.J. Stollnitz , A.D. DeRose, and D.H. Salesin, “Wavelets for Computer Graphics : A Primer ,Part 2”, IEEE Computer Graphics and Applications, Vol.15, no. 4, pp. 75 –85, July 1995
[33] D.L. Swets, and J.J. Weng, “Using Discriminant Eigenfeatures for Image Retrieval”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.18, no.8, pp.831 –836, Aug. 1996.
[34] S. Theodoridis , and K. Koutroumbas, Pattern Recognition, Academic Press, 1999
[35] M.A. Turk, and A.P. Pentland, “Face Recognition Using Eigenfaces” . Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1991, pp.586 –591
[36] F. Wallhoff , S. Muller, and G. Rigoll, ”Recognition of Face Profiles From The Mugshot Database Using a Hybrid Connectionise/HMM Approach”. In Proc. ICASSP,v.3, Salt Lake City, 2001
[37] H. Yu, and J. Yang, “A direct LDA algorithm for high-dimensional data - with application to face recognition”, Pattern Recognition, Vol.34, no.10, pp.2067-2070, 2001.
[38] J. Zhang, Y. Yan, and M. Lades, ”Face Recognition: Eigenface,Elastic Matching , and Neural Nets”, Proceedings of the IEEE ,Vol. 85,no. 9 , pp.1423 –1435, Sept. 1997
[39] Z. Zhou , S.Z. Li , and K.L. Chan,” A Theoretical Justification of Nearest Feature Line Method”, Pattern Recognition, Vol. 2, pp.759 –762, 2000
[40] Zhujie, and Y.L. Yu, “Face Recognition with Eigenfaces”. Proc. IEEE Conf. on Industrial Technology, 1994, pp. 434-438,
[41] 吳佳珍, “以鑑別性小波參數為主之人臉辨識系統”, 國立成功大學資訊工程學系碩士論文, Jun 2001