簡易檢索 / 詳目顯示

研究生: 李心惟
Lee, Shin-Wei
論文名稱: 結合HEC-RAS與MODFLOW於濁水溪沖積扇地下水與地層下陷模擬
Integrating HEC-RAS and MODFLOW to Simulate Groundwater and Landsubsidence of Choushui River Alluvial Fan
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 地下水地層下陷MODFLOWIBS1HEC-RAS
外文關鍵詞: Groundwater, Land subsidence, MODFLOW, IBS1, HEC-RAS
相關次數: 點閱:160下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   台灣西部沿海地區長年以來超抽地下水行為嚴重,且降雨時間不均,地表水無法有效運用,使得地下水供需失衡,造成嚴重地層下陷,濁水溪沖積扇地區為台灣最大地下水區,但下陷面積為全國最大,且近年來下陷中心逐漸向內陸移動,將影響高鐵沿線及其他重大工程之安全,故本研究主要以探討地下水與地層下陷對於濁水溪沖積扇之影響。
      本研究以地下水流數值模式PROCESSING MODFLOW建構三維地下水流數值模型,過去有關濁水溪沖積扇地下水流數值模式研究眾多,但較少對濁水溪主流與地下水流間交互形況進行探討,因此本研究先利用一維河道水理演算計算出各時間段河川水位高程,當作數值模式中河川套件(River package)之參數輸入,並以河川套件來表示濁水溪主流對於濁水溪沖積扇地下水系統入滲行為,完成地下水流數值模式建置後,再以非耦合方式使用IBS1模式計算濁水溪沖積扇地層壓縮量,最後結合本研究所建立地下水流模式與地層下陷模式,進行減抽與無減抽地下水對地下水位與地層壓縮量變化分析。
      研究結果推估出濁水溪平均每年入滲補注地下水量約3.65億噸,地表補注量約每年10.20億噸,邊界側向補注量約每年4.10億噸,且平均每年總抽水量約為18.99億噸,整體地下水收支情況仍為超抽。減抽方案模擬結果顯示,地下水水位可回升0.05公尺至5.65公尺,其中最大回升量位於元長鄉地區;而地層壓縮量可回彈1.07至5.19公分,以含水層二與含水層三改善最為顯著,此結果可提供未來評估高鐵沿線地區,減緩地下水位下降及地層下陷之參考。

    Land subsidence caused by over pumping of groundwater resource has severely caused large-scale damage to the Choushui river alluvial fan of the western area in Taiwan. The center of subsidence which has gradually moved inland in recent years will affect the safety of high speed rail and major engineering project. Therefore, this study uses integrated numerical models to simulate the effect on groundwater level and land subsidence in study area. The MODFLOW model and INTERBED model are adopted to simulate groundwater flow and land subsidence respectively. Moreover, HEC-RAS is utilized in this study to calculate the stream water level in order to represent groundwater-river interaction in groundwater system with River package. Models are used to analyze the change in groundwater level and land subsidence with a future reduced pumping scheme and compared to no reduced pumping plan. The result shows that the groundwater system is still over used during the simulated period. Besides, the groundwater level will expect to rise up 0.05m to 5.65m and the formation will rebound from the value 1.07cm to 5.19cm with significant improvement in aquifer two and aquifer three after the reducing scheme practice. The above result may apply to evaluate groundwater management and reduce the damage form the land subsidence in study area.

    中英文摘要 I 誌謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.2.1 MODFLOW地下水流數值模式 3 1.2.2河道水理演算模式 4 1.2.3地層下陷數值模式 5 第二章 研究區域概述 7 2.1地理環境 7 2.1.1地形與水系 7 2.1.2地質概述 7 2.2水文地質概述 9 2.2.1地下水層與阻水層沉積機制 9 2.2.2含水層與阻水層架構 9 2.2.3地下水層邊界 15 2.3地層下陷概況 17 第三章 理論方法 20 3.1 MODFLOW地下水流數值模式 20 3.1.1河川套件簡述 21 3.2 HEC-RAS一維河道水理演算 23 3.3壓密沉陷與IBS1模組理論 26 3.3.1壓密沉陷 26 3.3.2 IBS1 模組理論 28 第四章 模式建置與分析 31 4.1濁水溪河川水位模擬 31 4.1.1 HEC-RAS參數設定 31 4.1.2模擬結果分析 34 4.2地下水流數值模式建置 41 4.2.1模式層、網格與邊界設定 41 4.2.2時間與水文地質參數設定 43 4.3地下水流數值模式率定與驗證結果分析 49 4.3.1模式率定結果 49 4.3.2模式驗證結果 54 4.4水平衡收支 56 4.5 IBS1地層下陷模式 58 4.5.1參數輸入 58 4.5.2模式率定結果 59 4.5.3模式驗證結果 65 4.6減抽假設分析 70 4.6.1地下水位影響 74 4.6.2地層壓縮量影響 74 第五章 結論與建議 81 5.1結論 81 5.2建議 82 參考文獻 83 附錄A 88

    (1)Brunner, G.W.(2006), HEC-RAS river analysis system user’s manual version 4.0 beta. (CPD 68) CALIFORNIA: US Army Corps of Engineers. Hydrological Engineering Center (HEC). California.
    (2)Chiang, W. H., and Kinzelbch, W.(1998), Processing Modflow for windows (version 5.06), Hamburg, Germany.
    (3)Don N. C., Hang N. T. M., Araki H, Yamanishi H, and Koga K.(2006),“Groundwater resources and management for paddy field irrigation and associated environmental problems in an alluvial coastal lowland plain”, Agricultural Water Management Volume 84, Issue 3, p.295-304.
    (4)Galloway, D.L. and Sneed, M. (2013), “Analysis and simulation of regional subsidence accompanying groundwater abstraction and compaction of susceptible aquifer system in the USA”, BOLETIN DE LA SOCIEDAD MEXICANA, Volumen 65, p.123-136.
    (5)Hanson, R. T. (1989), “Aquifer-System Compaction, Tucson Basin and Avra Valley, Arizona”, U.S. Geological Survey Water-Resources Investigations Report 88-4172, 41P.
    (6)Helm, D. C. (1975), “One-Dimensional Simulation of Aquifer System Compaction Near Pixley, California 1. Constant Parameters”, Water Resources Research, Volume 11, p.465-478.
    (7)Helm, D. C. (1976), “One-Dimensional Simulation of Aquifer System Compaction Near Pixley, California 2. Stress-Dependent Parameters”, Water Resources Research, Volume 12, p.375-391.
    (8)Ireland, R.L., Poland, J.F., and Riley, F.S. (1984), “Land subsidence in the san Joaquin Valley, California, as of 1980”, U.S. Geological Survey Professional Paper 437I, 93P.
    (9) Larson, K. J. ,Basağaoğlu, H., and Mariño M. A.(2001), “Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model”, Journal of Hydrology, Volume 242, 79-102.
    (10)Leake, S. A.(1990), “Interbed storage changes and compaction in models of regional groundwater flow”, Water Resources Research, Volume 26, No.9, p.1939-1950.
    (11)Leake, L.A. and Galloway, D.L.(2010), “Use of the SUB-WT Package for MODFLOW to simulate aquifer-system compaction in Antelope Valley”, California, USA, Land Subsidence, Associated Hazards and the Role of Natural Resources Development, IAHS Publ., Volume 399, p.61-67.
    (12)McDonald, Mich el G. and Arl n W. Harbaugh (1988), “A modular three-dimensional finite-difference ground-water flow model”, U.S. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6 Chapter A1.
    (13)Meyer, W. R., and Carr, J. E. (1979), “A digital model for simulation of ground-water hydrology in the Houston area, Texas. Texas Dep.”, Water Resour. Rep. LP-103, 131PP.,Texas Dep. Of Water Resour., Austin.
    (14)Poland, J.F., Lofgren, B.E., Ireland, R.L., and Pugh, R.G. (1975), “Land subsidence in the San Joaquin Valley, California, as of 1972: U.S.”, Geological Survey Professional Paper 437-H, 78P.
    (15)Poland, J.F., and Ireland, R.L. (1988), “Land subsidence in the Santa Clara Valley, California, as of 1982: U.S. ”, Geological Survey Professional Paper 497-F, p.61.
    (16) Rodríguez, L.B., Cello, P.A., Vionnet C.A. and Goodrich, D. (2008), “Fully conservative coupling of HEC-RAS with MODFLOW to simulate stream-aquifer interactions in a drainage basin”, Journal of Hydrology, Volume 353, p.129-142.
    (17) Rodríguez, L.B., Cello, P.A., Vionnet, C.A.(2006), “Modeling stream -aquifer interaction in a shallow aquifer, Choele Choel Island, Patagonia, Argentina”, Hydrogeology Journal, Volume 14, p.591-602.
    (18)Rushton, K. (2007), “Representation in regional models of saturated river-aquifer interaction for gaining/losing rivers”, Journal of Hydrology, Volume 344, p.262-281.
    (19)Sophocleous, M., Perkins, S.P. (1993), “Calibrated models as management tools for stream-aquifer system: the case of central Kansas, USA”, Journal of Hydrology, Volume 152, p.31-56.
    (20)Terzaghi, K. (1943), Theoretical Soil Mechanics, Chapman and Hall, London.
    (21)Williamson, A. K., Purdic, D. E. and Swain, L. A. (1989), “Ground-water flow in the Central Valley, California”, U.S. Geol. Surv. Prof. Pap. 1401-D, 127P.
    (22)Wilson, A. M., Gorelick, S.(1996), “The effect of pulsed pumping on land subsidence in the Santa Clara valley, California”, Journal of Hydrology, Volume 174, Issues 3-4, p.375-396
    (23)Worakijthamrong, S. and Cluckie, I.(2013), “Groundwater–river interaction and management in the context of inter-basin transfers”, Environmental Earth Sciences, Volume 70, Issue 5, p.2039-2045
    (24)Yang, J., Townsend, R.D., and Daneshfar, B.(2006), “Applying the HEC-RAS model and GIS techniques in river network floodplain delineation”, Canadian Journal of Civil Engineering, Volume 33(1), p.19-28.
    (25)江崇榮、陳瑞娥(2005),「濁水溪沖積扇地下水區之補助區與補助源探討」,經濟部中央地質調查所彙刊,第18號,第1-28頁。
    (26)江崇榮、黃智昭、陳瑞娥(2006),「以地下水歷線分析法評估濁水溪沖積扇之地下水收支」,經濟部中央地質調查所彙刊,第19號,第61-89頁。
    (27)江崇榮、賴典章、黃智昭、賴慈華、陳利貞(1996),「濁水溪沖積扇之水文地質與地下水系統概念模型」,濁水溪沖積扇地下水及水文地質研討會論文集。
    (28)李振誥、許清荃(2000),「地下水資源調配與管理-以濁水溪沖積扇為案例」,水資源管理,第8卷,第24-31頁。
    (29)李振誥、許清荃、林俶寬(2000),「濁水溪沖積扇多層地下水調配與管理之研究」,臺灣水利,第48卷,第4期,第41-52頁。
    (30)林時猷、許少華(2004),「以數值模擬評估濁水溪沖積扇北彰化地區之地下水水文細節及人為抽水分佈」,農業工程學報,第50卷,第3期,第48-58頁。
    (31)林崇亮(2001),「數值模擬及不確定分析法估算濁水溪沖積扇地下水蘊藏量之研究」,國立成功大學資源工程系所碩士論文。
    (32)林聖婷(2012),「濁水溪沖積扇補注量與抽水量空間分佈模式建立」,國立台灣大學土木工程學研究所碩士論文。
    (33)侯伊浩(2010),「應用地層下陷模式探討地下水位與地層下陷量相關性之研究」,國立成功大學資源工程系所碩士論文。
    (34)徐年盛、江崇榮、汪中和、劉振宇、劉宏仁、黃建霖(2012),「多類灌溉形式下地下水系統抽水量與補注量之估算」,農業工程學報,第58卷,第1期,第69-90頁。
    (35)徐年盛、汪中和、江崇榮(2009),「結合地下水平衡分析結果與氫氧同位素分析推估濁水溪沖積扇地下水各補注水源之水量」,第七屆地下水資源保護研討會,第F36-F45頁。
    (36)陳忠偉、潘文健、李振誥(2002),「濁水溪沖積扇與屏東平原地下水合適出水量之研究」,臺灣水利,第50卷,第3期,第70-82頁。
    (37)陳建銘 (2005),「地層下陷模擬程序之建立與應用—以大城鄉西港地區為例」,國立成功大學土木工程所碩士論文。
    (38)陳肇夏、何信昌、謝凱旋、羅偉,林偉雄、張徽正、黃鑑水、林啟文、陳正恆、楊昭男、李元希,「台灣地質圖」,經濟部中央地質調查所,2000。
    (39)楊亞欣(2013),「濁水溪沖積扇地下水與地層下陷聯合運用模擬與分析」,國立成功大學資源工程系所碩士論文。
    (40)經濟部中央地質調查所(1999),「台灣地區地下水觀測網第一期計畫濁水溪沖積扇水文地質調查研究總報告」,經濟部水資源局委託計畫。
    (41)經濟部水利署(2002),「地下水資源整體營運規劃與綜合評估(1/2) 」。
    (42)經濟部水利署(2006),「95年度彰雲地區地層下陷監測及分析計畫」。
    (43)經濟部水利署(2007),「濁水溪沖積扇地面地下水聯合運用管理模式建立與機制評估」。
    (44)經濟部水利署(2009) ,「地層下陷分層監測點評析建立及試驗分析計畫」。
    (45)經濟部水利署(2011),「多重感應器應用於台北、彰化及雲林地區地層下陷監測與機制探討」。
    (46)經濟部水利署(2012),「地層下陷防治服務團101年度執行計畫」。
    (47)經濟部水利署(2013),「地表地下水整合性數值模式運用於地下水補注規劃」。
    (48)經濟部水利署(2014),「地下水補注地質敏感區劃定計畫書」。
    (49)劉志純、劉振宇、陳增壽、陳瑞昇(1996),「抽水行為對雲林地區地層下陷之影響」,台灣水利季刊,第44卷,第4期,第15-25頁。
    (50)蔡東霖(2001),「區域性地下水超抽導致地層下陷模式之發展與應用」,國立交通大學土木工程學研究所博士論文。
    (51)蔡清研(2007),「濁水溪沖積扇整合模式下之MODFLOW地下水模擬研究」,國立中正大學應用地球物理研究所碩士論文。
    (52)謝壎煌、陳忠偉、葉信富、李振誥(2007),「應用河道水位變化評估新虎尾溪地下水補注量之研究」,農業工程學報,第53卷,第2期,第50-60頁。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE