簡易檢索 / 詳目顯示

研究生: 胡學琳
Hu, Shiue-lin
論文名稱: 油品深度除硫吸附技術研究
Study on Deep Desulfurization of Oil by Adsorption Technology
指導教授: 黃耀輝
Huang, Yao-hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 115
中文關鍵詞: 柴油吸附沸石鐵氧化物除硫
外文關鍵詞: iron oxide, desulfurization, adsorption, diesel fuel, zeolite
相關次數: 點閱:104下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 油品的深度除硫越來越受到全球各國的重視,以美國為例,美國環保署規定到2006年以前柴油的含硫量必須從500 ppmw降至15 ppmw。倘若能將柴油中的硫深度去除就代表能將目前市場上的燃料油推上燃料電池的應用面,且柴油相對於其他燃料油便宜,若能成功除硫將可提升燃料油產氫的市場競爭力;所以如何將柴油中所含的硫在蒸氣重組反應之前或之後去除,達到燃料電池不受硫毒化的含量以下,是如今燃料油產氫技術中最為關鍵的研究課題,本研究將著重於油品之脫硫研究。
    我們的構想是以沸石及鐵氧化物做為吸附材,再利用可與硫化物形成π-complexation的過渡金屬對其進行改質,而改質後的沸石與鐵氧化物再對硫化物進行吸附實驗。在常溫常壓下進行單成分硫化物(4,6-dimethyldibenzothiophene, 4,6-DMDBT)的吸附實驗部份,研究結果顯示以AgY改質過的沸石處理效果最好,在處理後濃度低於0.1 ppmS的目標下,每克吸附材可處理500 ml含30 ppm 4,6-DMDBT的油品;另外,我們發現代號BL的鐵氧化物於氮氣下以300℃鍛燒後(代號BL-300-N)吸附效果最好,優於市售鐵氧化物(FeOOH-300-N)約4倍之多,顯示了BL吸附材的獨特性。在連續式吸附實驗部份,活性碳(AC)及鐵氧化物對4,6-DMDBT的處理效果依次如下:AC > BL-300-N。

    Deep desulfurization of transportation fuels is receiving increasing attention in the research community worldwide. For example, US Environmental Protection Agency has issued regulations that will require the refineries to reduce the sulfur content of highway diesel fuel from a current limit of 500 to 15 ppmw by 2006.
    The idea of our approach is to utilize the zeolites which are modified by some transition metals with π-complexation function as the sorbents for removing the refractory sulfur compounds. Considering the modification of sorbent by exchanging transition metal ions zeolites, we found (by EDS) that about half of sodium ions in zeolite were replaced by metal ions, especially silver ions. Desulfurization of single sulfur compound (4,6-DMDBT) by the modified zeolites was operated at ambient temperature and pressure in a batch test. The results showed that AgY was capable of treating at least 500 ml of 30 ppmw 4,6-DMDBT to below 0.1 ppmS. In the part of iron oxide, we found that after calcining at 300℃ for 24 hours in nitrogen, BL-300-N obtained the best removal efficiency among all modified BL type iron oxides. It has about 4 times adsorption capacity better than that by commercial FeOOH-300-N iron oxide. In the fixed bed continuous experiments, we found that the adsorption capacity of active carbon and iron oxide follows the order AC > BL-300-N. According to the results shown above, we could reach to the best sulfur removal efficiency by using fixed bed continuous process.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 總目錄…………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅷ 圖目錄…………………………………………………………………Ⅸ 第一章 緒論…………………………………………………………1 1-1 背景……………………………………………………….1 1-2 目的……………………………………………………….6 第二章 文獻回顧…………………………………………………..7 2-1 前言……………………………………………………….7 2-2 選擇性吸附(selective adsorption)法…………….12 第三章 實驗部分………………………………………………....36 3-1 實驗架構圖……………………………………………….36 3-1.1 魚骨圖…………….……………………………………..36 3-1.2 實驗架構圖….…………………………………………..37 3-2 實驗藥品………………………………………………….38 3-3 沸石的批次吸附實驗…………………………………….39 3-3.1 沸石的批次吸附實驗流程圖…….……………………..39 3-3.2 沸石的批次吸附實驗步驟……………….……………..40 3-3.3 其他吸附材的製備……………………………………….43 3-4 鐵氧化物的批次吸附實驗……………………………….44 3-4.1 鐵氧化物的批次吸附實驗流程圖……………………….44 3-4.2 鐵氧化物的批次吸附實驗步驟………………………….45 3-5 沸石的連續式吸附實驗………………………………….47 3-5.1 沸石的連續式吸附實驗流程圖………………………….47 3-5.2 沸石的連續式吸附實驗步驟…………………………….48 3-6 單一成分油品配製……………………………………….50 3-7 硫化物的檢測…………………………………………….51 3-8 吸附材鑑定……………………………………………….56 3-8.1 表面型態觀察……..……………………..…………….56 3-8.2 表面元素分析……..…………………….….………….56 3-8.3 晶相分析……..……………………..………………….57 3-8.4 BET比表面積測定…………………..…………………..58 第四章 結果與討論-沸石.………………….………………… ..59 4-1 吸附材的分析…………………………………………….59 4-1.1 沸石……………………………………………………….59 4-2 以各式吸附材吸附市售柴油…………………………….67 4-3 批次吸附研究…………………………………………….73 4-3.1 以CuY- 3、CuY- 4及CuY- 5沸石吸附單一成分油品….74 4-3.2 金屬離子( Ag+、Zn2+、Ni2+ )改質之沸石吸附單一成分 油品……………………………………………………….76 4-4 連續式吸附研究………………………………………….80 第五章 結果與討論-鐵氧化物….……………………………....82 5-1 吸附材的分析…………………………………………….82 5-1.1 鐵氧化物的篩選………………………………………….83 5-1.2 鐵氧化物的晶相分析…………………………………….85 5-1.3 鐵氧化物的表面型態觀察與成分分析………………….89 5-1.4 鐵氧化物的化學結構分析……………………………….92 5-1.5 鐵氧化物的彼表面積與孔隙分析……………………….94 5-2 單成分的批次吸附研究………………………………….97 5-2.1 鐵氧化物BL-300-N處理單一成分油品………………...97 5-2.2 BL-300-N的等溫吸附曲線模式...……………………..99 5-2.3 MTBE與Ethanol的影響………....……………………..102 5-3 連續式吸附研究………………………………………...105 5-4 各式吸附材的效果比較………………………………….106 第六章 結論與建議……………………………...………….….108 6-1 結論……………………………………………………...108 6-2 建議……………………………………….………………110 參考文獻…………………………………………….……………….111 自述…..…………………………………………….……………….115

    Costa, P. D.; Potvin, C.; Manoli, J. M.; Lemberton, J. L.; New catalysts for hydrotreatment of diesel fuel kinetics of 4,6-dimethyldibenzothiophene hydrodesulfurization over alumina-supported molybdenum carbide, Journal of Molecular Catalysis A: Chemical, 184, 323-333, 2002.
    Dinauer, R.C.; Weed, S.B.; Dixon, J.B.; Minerals In Soil Environments, Chapter 8, pp.379-438, SSSA, Madison Wis., USA, 1989.
    DeCanio, E. C.; Weissman, J. G.; FT-IR analysis of borate-promoted Ni-Mo/Al2O3 hydrotreating catalysts, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 105(1), 123-132, 1995.
    Herna´ndez-Maldonado, A. J.; Yang, R. T.; Desulfurization of liquid fuels by adsorption via π-complexation with Cu(I)-Y and Ag-Y zeolites, Ind. Eng. Chem. Res., 42, 123-129, 2003a.
    Herna´ndez-Maldonado, A. J.; Yang, R. T.;Desulfurizationof Commercial Liquid Fuels by Selective Adsorption via π-Complexationwith Cu(I)-Y Zeolite, Ind. Eng. Chem. Res., 42(13), 3103-3110, 2003b.
    Herna´ndez-Maldonado, A. J.; Stamatis, S. D.; Yang, R. T.; New Sorbents for Desulfurization of Diesel Fuels via π-Complexation: Layered Beds and Regeneration, Ind. Eng. Chem. Res., 43, 769-776, 2004a.
    Herna´ndez-Maldonado, A. J.; Yang, R. T.; Desulfurization of Transportation Fuels by Adsorption, CATALYSIS REVIEWS, 46(2),111–150, 2004b.
    Herna´ndez-Maldonado, A. J.; Yang, R. T.; Desulfurization of Diesel Fuels via π-Complexation with Nickel(II)-Exchanged X- and Y-Zeolites. Ind. Eng. Chem. Res., 43, 1081-1089, 2004c.
    Herna´ndez-Maldonado, A. J.; Yang, R. T.; Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(I)-Y Zeolites, J. Am. Chem. Soc., 126(4), 992-993, 2004d.
    Herna´ndez-Maldonado, A. J.; Yang, F. H.; Qi, G.; Yang, R. T.; Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolite, Applied Catalysis B: Environmental, 56, 111–126, 2005a.
    Herna´ndez-Maldonado, A. J.; Qi, G.; Yang, R. T.; Desulfurization of commercial fuels by π-complexation Monolayer CuCl/γ-Al2O3, Applied Catalysis B: Environmental, 61, 212-218, 2005b.
    Li, Y.; Yang, F. H.; Qi, G.; Yang, R. T.; Effects of oxygenates and moisture on adsorptive desulfurization of liquid fuels with Cu(I)Y zeolite, Catalysis Today, 116, 512-518, 2006.
    Ma, X.; Sun, L.; Yin, Z.; Song, C.; New approaches to deep desulfurization of diesel fuel, jet fuel, and gasoline by adsorption for ultra-clean fuels and for fuel cell applications, Am. Chem. Soc. Div. Fuel. Chem. Prepr., 46(2), 648, 2001.
    Ma, X.; Lu, S.; Song, C.; A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications, Catalysis Today, 77(1-2), 107-116, 2002.
    Ma, X.; Sun, L.; Song, C.; Velu, S.; Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents, Industrial and Engineering Chemistry Research, 42(21), 5293-5304, 2003.
    Ma, X.; Velu, S.; Kim, J. H.; Song, C.; Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications,
    Applied Catalysis B: Environmental, 56, 137-147, 2005.
    Pan, Y. G.; Perales, J. F.; Velo, E.; Puigjaner, L.; Kinetic behaviour of iron oxide sorbent in hot gas desulfurization, Fuel , 84, 1105-1109, 2005.
    Schwertmann, U.; Gasser, U.; Sticher, H.; Chromium for iron substitution in synthetic goethites, Geochim. Cosmochim. Acta., 53, 1293, 1989.
    Song, C.; Ma, X.; New design approaches to ultra-clean diesel fuel by deep desulfurization and deep dearomatization, Applied Catalysis B:Environmental, 41, 207–238, 2003.
    Song, C.; An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catalysis Today, 86, 211–263, 2003.
    Takahashi, A.; Yang, F. H.; Yang, R. T.; New sorbents for desulfurization by π-complexation: Thiophene/benzene adsorption, Industrial and Engineering Chemistry Research, 41(10), 2487-2496, 2002.
    Vanrysselberghe, V; Froment, G. F.; Kinetic modeling of hydrodesulfurization of oil fractions: light cycle oil, Industrial & Engineering Chemistry Research, 37(11), 4231-4240, 1998.
    Yang, R. T.; Foldes, R.; New adsorbents based on principles of chemical complexation: monolayer-dispersed nickel(II) for acetylene separation by π-complexation, Ind. Eng. Chem. Res., 35, 1006-1011, 1996.
    Yang, R. T.; Takahashi, A.; Yang, F. H.; New sorbents for desulfurization of liquied fuels by π-complexation, Ind. Eng. Chem. Res., 40, 6236-6239, 2001.
    Yang, R. T.; Herna´ndez-Maldonado, A. J.; Yang, F. H.; Desulfurization of transportation fuels with zeolites under ambient conditions, Science , 301 (5629) , 79-81, 2003.

    下載圖示 校內:2010-06-20公開
    校外:2010-06-20公開
    QR CODE