簡易檢索 / 詳目顯示

研究生: 吳正偉
Wu, Zhang-Wei
論文名稱: 可撓鋅箔上以熱氧化法合成雙向性氧化鋅奈米線其特性之研究
A study of bidirectional growth of ZnO nanowires on flexible Zn foils by thermal oxidation
指導教授: 田興龍
Tyan, Shing-Long
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 121
中文關鍵詞: 氧化鋅螢光光譜激子可撓性
外文關鍵詞: ZnO, photoluminescence, nanowire, nanotower
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文描述利用熱氧化法在可撓性鋅箔上成長的氧化鋅奈米結構並探討其特性。在此技術中,氧化鋅奈米結構將通過兩個步驟成長於在鋅箔上:鋅箔首先由鋅和氧化鋅粉末的混合物製成,並通過在氧氣的條件下和氧化溫度的變化形成氧化鋅奈米結構。
    利用一連串表面形貌,晶體結構和光學分析來觀察樣品,並研究氧化溫度的改變對於奈米結構的影響。剛成長好的鋅箔表面上其鋅晶粒。在300℃下氧化的鋅箔的鋅晶粒上獲得氧化鋅奈米片。對於在高於400℃的溫度下氧化的鋅箔,在鋅晶粒的六邊形表面上合成了雙向氧化鋅奈米線。絕大多數奈米線隨著氧化溫度增加到600℃而演變成奈米塔。結構分析結果表明,氧化鋅奈米線和奈米塔為單晶六方纖鋅礦結構,沿[101]方向生長。
    氧化鋅的光致螢光光譜在紫外區域顯示出明顯的峰值,在可見光區域顯示出較寬的綠光發光峰值。此外,隨著氧化溫度的提高,可見光的發光峰值受到強烈的抑制。狹窄的激子半高寬與強烈抑制的可見光的發光峰值結合表現出奈米線的高光學品量。在具有高光學品量的鋅箔上生長的奈米線將適用於可撓性的平面UV裝置應用。另外,通過可變溫PL分析來獲得施子能階和受子能階的結合能。
    X射線光電子能譜分析表明,與自然氧化的鋅箔相比,氧化鋅奈米線對氫氧根和水具有高度抗性,表明它們可能應用於高靈敏度感測器。通過兩點式探針I-V測量研究了單根氧化鋅奈米線的電學性質。電阻率為〜93Ωcm。
    最後,我們報告這種技術所製造的奈米結構,並與使用不同的生長技術合成的奈米結構進行了比較。它表明這種技術是一種用於合成氧化鋅奈米結構的簡單且通用的方法。使用這種技術製造的奈米結構將來將需要更進一步的研究。

    This thesis describes the growth and characterization of ZnO nanostructures grown on flexible Zn foil using the thermal oxidation technique. In this technique, ZnO nanostructures were directly grown on zinc foils through a two-step process: the Zn foils were first fabricated from a mixture of Zn and ZnO powders and then the ZnO nanostructures was achieved by variation of oxidation temperature under oxygen flow.
    The samples were analyzed using a range of surface, structural, and optical analyses to determine the effects that varying oxidation temperatures had on the growth modes of these nanostructures. Zn grains formed on the surface of the as-grown Zn foil. ZnO nanoflakes were obtained on the Zn grains for the foil oxidized at 300 °C. For the foil oxidized at temperatures higher than 400 °C, bi-directional ZnO nanowires (NWs) were synthesized on the hexagonal surface of Zn grains. The vast majority of nanowires evolved into nanotowels as the oxidation temperature was further increased to 600 °C. Results of structure analysis indicated that the ZnO nanowires and nanotowers were of single crystal hexagonal wurtzite structure, growing along the [101] direction.
    The photoluminescence (PL) spectrum of the ZnO NWs showed sharp peaks in the ultraviolet region and the broad deep-level related green emission peak in the visible region; moreover, visible emission was strongly suppressed with increasing oxidation temperature. The narrow excitonic PL peak combined with strongly suppressed visible emission demonstrated the high optical quality of the NWs. The NWs grown on the Zn foil with high optical quality would be suitable for flexible planar UV device applications. In addition, the binding energies of the donor bands and an acceptor band were obtained through temperature-dependent PL analysis.
    Additionally, X-ray photoelectron spectroscopy analysis showed that the ZnO NWs were highly resistant to hydroxyl groups and water compared with Zn foil that was oxidized naturally, suggesting their possible application in high sensitivity sensors. The electrical property of single ZnO NWs was investigated by two-point probe I-V measurement. The resistivity was found to be ~93 Ω cm.
    Finally, we report all the nanostructures fabricated by this technique and compared with that synthesized by different growth techniques. It demonstrates this technique is a simple and versatile method for producing ZnO nanostructures. The nanostructures fabricated by this technique will require further investigation in the future.

    中文摘要--------------------------------------------I Abstract-------------------------------------------III 致謝------------------------------------------------V Table of Contents----------------------------------VII List of Table--------------------------------------XI List of Figures------------------------------------XII Chapter 1. Introduction----------------------------1 1-1 ZnO Structure and Properties-------------------2 1-1-1 Crystal structure----------------------------3 1-1-2 Optical properties---------------------------5 1-1-3 Electrical properties------------------------9 1-2 Applications-----------------------------------11 1-3 Growth techniques------------------------------12 1-4 Motivations------------------------------------14 Chapter 2. Theory----------------------------------17 2-1 Nucleation and Step edge growth----------------17 2-2 Photoluminescence------------------------------20 2-2-1 Free exciton luminescence--------------------20 2-2-2 Phonon-assisted exciton luminescence---------22 2-2-3 Bound exciton luminescence-------------------23 2-3 Derivation of equation of activation energy----24 Chapter 3. Apparatus and Analyzing System Principle ----------------------------------------------------25 3-1 Radio Frequency (RF) Sputter-------------------25 3-2 Tube Furnace-----------------------------------27 3-3 Scanning Electron Microscopy (SEM)-------------28 3-4 Grazing Incident X-ray Scattering (GIXRD)------30 3-5 Temperature-Dependent Photoluminescence Spectrophotometry----------------------------------32 3-6 High Resolution Transmission Electron Microscopy (HRTEM)--------------------------------------------34 3-7 X-ray Photoelectron Spectroscopy (XPS)---------36 Chapter 4. Bidirectional growth of ZnO nanowires with high optical properties directly on Zn foil--------38 4-1 Introduction-----------------------------------38 4-2 Experimental Methods---------------------------42 4-3 Result and Discussion--------------------------44 4-4 Summary----------------------------------------51 Chapter 5. Photoluminescence and electrical property of bidirectional ZnO nanowires on Zn foils via a thermal oxidation method-----------------------------------56 5-1 Introduction-----------------------------------56 5-2 Experimental Methods---------------------------60 5-3 Result and Discussion--------------------------63 5-4 Summary----------------------------------------72 Chapter 6. Temperature-dependent photoluminescence and XPS study of ZnO nanowires grown on flexible Zn foil via thermal oxidation----------------------------------80 6-1 Introduction-----------------------------------80 6-2 Experimental Methods---------------------------82 6-3 Result and Discussion--------------------------83 6-4 Summary----------------------------------------92 Chapter 7. Conclusion------------------------------98 Chapter 8. Future work-----------------------------99 List of the publications---------------------------103 Reference------------------------------------------104

    [1] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Superlattices and Microstructures, 34 (2003) 3-32.
    [2] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98 (2005) 041301.
    [3] L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.O. Velthaus, H.W. Schock, ZnO/CdS/CuInSe2 thin‐film solar cells with improved performance, Appl. Phys. Lett., 62 (1993) 597-599.
    [4] E. Nakazawa, Fundamentals of luminescence, in: Phosphor Handbook, CRC Press, 2006.
    [5] Y. Liu, Y. Li, H. Zeng, ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing, J. Nanomater., 2013 (2013) 9.
    [6] C.-Y. Huang, J.-H. Sun, T.-T. Wu, A two-port ZnO/silicon Lamb wave resonator using phononic crystals, Appl. Phys. Lett., 97 (2010) 031913.
    [7] S.S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, Electrodeposited ZnO/Cu2O heterojunction solar cells, Electrochimica Acta, 53 (2008) 2226-2231.
    [8] V. Galstyan, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, Nanostructured ZnO chemical gas sensors, Ceramics International, 41 (2015) 14239-14244.
    [9] L. Guo, H. Zhang, D. Zhao, B. Li, Z. Zhang, M. Jiang, D. Shen, High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method, Sensor. Actuat B:Chem., 166–167 (2012) 12-16.
    [10] T. Wang, H. Wu, H. Zheng, J.B. Wang, Z. Wang, C. Chen, Y. Xu, C. Liu, Nonpolar light emitting diodes of m-plane ZnO on c-plane GaN with the Al2O3 interlayer, Appl. Phys. Lett., 102 (2013) 141912.
    [11] A.H. Kitai, Principles of Luminescence, in: Luminescent Materials and Applications, John Wiley & Sons, Ltd, 2008, pp. 1-18.
    [12] D. Lee, W. Ki Bae, I. Park, D.Y. Yoon, S. Lee, C. Lee, Transparent electrode with ZnO nanoparticles in tandem organic solar cells, Solar Energy Materials and Solar Cells, 95 (2011) 365-368.
    [13] F. Fleischhaker, V. Wloka, I. Hennig, ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates, J. Mater. Chem., 20 (2010) 6622-6625.
    [14] J. Kim, J. Meng, D. Lee, M. Yu, D. Yoo, D.W. Kang, J. Jo, ZnO Thin-Film Transistor Grown by rf Sputtering Using Carbon Dioxide and Substrate Bias Modulation, J. Nanomater., 2014 (2014) 7.
    [15] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Controlled Growth of ZnO Nanowires and Their Optical Properties, Adv. Funct. Mater., 12 (2002) 323-331.
    [16] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of Semiconducting Oxides, Science, 291 (2001) 1947-1949.
    [17] W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett., 80 (2002) 4232-4234.
    [18] L. Lu, J. Chen, L. Li, W. Wang, Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance, Nanoscale Res. Lett., 7 (2012) 293.
    [19] M.C. Akgun, Y.E. Kalay, H.E. Unalan, Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt, Journal of Materials Research, 27 (2012) 1445-1451.
    [20] B.H. Kim, J.W. Kwon, Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates, Scientific Reports, 4 (2014) 4379.
    [21] Z. Zhu, T.-L. Chen, Y. Gu, J. Warren, R.M. Osgood, Zinc Oxide Nanowires Grown by Vapor-Phase Transport Using Selected Metal Catalysts:  A Comparative Study, Chemistry of Materials, 17 (2005) 4227-4234.
    [22] M. Al-Suleiman, A.C. Mofor, A. El-Shaer, A. Bakin, H.-H. Wehmann, A. Waag, Photoluminescence properties: Catalyst-free ZnO nanorods and layers versus bulk ZnO, Appl. Phys. Lett., 89 (2006) 231911.
    [23] W. Lee, M.-C. Jeong, J.-M. Myoung, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation, Acta Materialia, 52 (2004) 3949-3957.
    [24] S. Ren, Y.F. Bai, J. Chen, S.Z. Deng, N.S. Xu, Q.B. Wu, S. Yang, Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation, Mater. Lett., 61 (2007) 666-670.
    [25] N. Tiwale, Zinc oxide nanowire gas sensors: fabrication, functionalisation and devices, Materials Science and Technology, 31 (2015) 1681-1697.
    [26] K.J. Choi, H.W. Jang, One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues, Sensors, 10 (2010) 4083.
    [27] M.R. Alenezi, S.J. Henley, S.R.P. Silva, On-chip Fabrication of High Performance Nanostructured ZnO UV Detectors, Scientific Reports, 5 (2015) 8516.
    [28] W.J. Boettinger, D.K. Banerjee, 7 - Solidification A2 - Laughlin, David E, in: K. Hono (Ed.) Physical Metallurgy (Fifth Edition), Elsevier, Oxford, 2014, pp. 639-850.
    [29] Z.R. Dai, Z.W. Pan, Z.L. Wang, Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation, Adv. Funct. Mater., 13 (2003) 9-24.
    [30] J.M. Blakely, K.A. Jackson, Growth of Crystal Whiskers, The Journal of Chemical Physics, 37 (1962) 428-430.
    [31] I. Tarján, Laboratory Manual on Crystal Growth, Akad. Kiadó, 1972.
    [32] S.L. Mensah, V.K. Kayastha, I.N. Ivanov, D.B. Geohegan, Y.K. Yap, Formation of single crystalline ZnO nanotubes without catalysts and templates, Appl. Phys. Lett., 90 (2007) 113108.
    [33] G.C. La Rocca, Wannier–Mott Excitons in Semiconductors, in: Thin Films and Nanostructures, Academic Press, 2003, pp. 97-128.
    [34] I. Vragović, R. Scholz, Frenkel exciton model of optical absorption and photoluminescence in $ensuremath{alpha}$-PTCDA, Phys. Rev. B, 68 (2003) 155202.
    [35] F. Demangeot, V. Paillard, P.M. Chassaing, C. Pagès, M.L. Kahn, A. Maisonnat, B. Chaudret, Experimental study of LO phonons and excitons in ZnO nanoparticles produced by room-temperature organometallic synthesis, Appl. Phys. Lett., 88 (2006) 071921.
    [36] J.S. Reparaz, L.R. Muniz, M.R. Wagner, A.R. Goñi, M.I. Alonso, A. Hoffmann, B.K. Meyer, Reduction of the transverse effective charge of optical phonons in ZnO under pressure, Appl. Phys. Lett., 96 (2010) 231906.
    [37] J.Y. Liu, Y. Zhang, C.H. Liu, M.Z. Peng, A.F. Yu, J.Z. Kou, W. Liu, J.Y. Zhai, L. Juan, Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire, Nanoscale Res Lett, 11 (2016).
    [38] D.C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Eng., B, 80 (2001) 383-387.
    [39] W.-K. Hong, B.-J. Kim, T.-W. Kim, G. Jo, S. Song, S.-S. Kwon, A. Yoon, E.A. Stach, T. Lee, Electrical properties of ZnO nanowire field effect transistors by surface passivation, Colloid. Surface. A, 313–314 (2008) 378-382.
    [40] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater., 4 (2005) 455-459.
    [41] X. Wang, K. Huo, F. Zhang, Z. Hu, P.K. Chu, H. Tao, Q. Wu, Y. Hu, J. Zhu, Structural Regulation and Optical Properties of One-Dimensional ZnO Nanomaterials in Situ Grown from and on Brass Substrates, J. Phys. Chem C, 113 (2009) 170-173.
    [42] C.X. Zhao, Y.F. Li, J. Zhou, L.Y. Li, S.Z. Deng, N.S. Xu, J. Chen, Large-Scale Synthesis of Bicrystalline ZnO Nanowire Arrays by Thermal Oxidation of Zinc Film: Growth Mechanism and High-Performance Field Emission, Cryst. Growth Des., 13 (2013) 2897-2905.
    [43] J. Wang, L. Gao, Hydrothermal synthesis and photoluminescence properties of ZnO nanowires, Solid State Commun., 132 (2004) 269-271.
    [44] E. Ken, R. Heidi Van den, H. An, K.V.B. Marlies, D.H. Jan, P. Roos, F. Dirk, M. Jules, Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter, Nanotechnology, 20 (2009) 055608.
    [45] Z. Hui, M. Xiangyang, X. Jin, N. Junjie, Y. Deren, Arrays of ZnO nanowires fabricated by a simple chemical solution route, Nanotechnology, 14 (2003) 423.
    [46] L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds, Nano Lett., 5 (2005) 1231-1236.
    [47] S.P. Anthony, J.I. Lee, J.K. Kim, Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition, Appl. Phys. Lett., 90 (2007) 103107.
    [48] N. Kitazawa, M. Aono, Y. Watanabe, Growth of vertically aligned one-dimensional ZnO nanowire arrays on sol–gel derived ZnO thin films, Journal of Physics and Chemistry of Solids, 75 (2014) 1194-1200.
    [49] Z. Guang, Z. Yusheng, W. Sihong, Y. Rusen, D. Yong, W. Xue, B. Yoshio, W. Zhong lin, Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root, Nanotechnology, 23 (2012) 055604.
    [50] J. Liu, R. Lu, G. Xu, J. Wu, P. Thapa, D. Moore, Development of a Seedless Floating Growth Process in Solution for Synthesis of Crystalline ZnO Micro/Nanowire Arrays on Graphene: Towards High-Performance Nanohybrid Ultraviolet Photodetectors, Adv. Funct. Mater., 23 (2013) 4941-4948.
    [51] G. Tandra, B. Subhajit, K. Soumitra, D. Apurba, C. Supriya, C. Subhadra, Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process, Nanotechnology, 19 (2008) 065606.
    [52] E. Mosquera, J. Bernal, M. Morel, R.A. Zarate, Structural and Optical Studies of Zinc Oxide Nanowires Grown Directly on Zinc Foil Substrate by Thermal Evaporation Method, J. Nanoeng. Nanomanuf., 2 (2012) 253-258.
    [53] L. Yuan, C. Wang, R. Cai, Y. Wang, G. Zhou, Temperature-dependent growth mechanism and microstructure of ZnO nanostructures grown from the thermal oxidation of zinc, J. Cryst. Growth, 390 (2014) 101-108.
    [54] Farid J. Sheini, Dilip S. Joag, M.A. More, Patterned Growth of ZnO Nanowire Arrays on
    Zinc Foil by Thermal Oxidation International Scholarly and Scientific Research & Innovation, 5 (2011) 109.
    [55] X. Fen, Y. Zhong-Yong, D. Gao-Hui, R. Tie-Zhen, B. Claire, H. Matej, S. Bao-Lian, Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties, Nanotechnology, 17 (2006) 588.
    [56] Z. Li, Y. Ding, Y. Xiong, Q. Yang, Y. Xie, Room-temperature surface-erosion route to ZnO nanorod arrays and urchin-like assemblies, Chemistry - A European Journal, 10 (2004) 5823-5828.
    [57] G.H. Du, F. Xu, Z.Y. Yuan, G.V. Tendeloo, Flowerlike ZnO nanocones and nanowires: Preparation, structure, and luminescence, Appl. Phys. Lett., 88 (2006) 243101.
    [58] L. Xu, X. Li, Z. Zhan, L. Wang, S. Feng, X. Chai, W. Lu, J. Shen, Z. Weng, J. Sun, Catalyst-Free, Selective Growth of ZnO Nanowires on SiO2 by Chemical Vapor Deposition for Transfer-Free Fabrication of UV Photodetectors, ACS Appl. Mater. Inter., 7 (2015) 20264-20271.
    [59] H. Nguyen, C.T. Quy, N.D. Hoa, N.T. Lam, N.V. Duy, V.V. Quang, N.V. Hieu, Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors, Sensor. Actuat B:Chem., 193 (2014) 888-894.
    [60] R. Khan, H.W. Ra, J.T. Kim, W.S. Jang, D. Sharma, Y.H. Im, Nanojunction effects in multiple ZnO nanowire gas sensor, Sensor. Actuat B:Chem., 150 (2010) 389-393.
    [61] M. Zacharias, K. Subannajui, A. Menzel, Y. Yang, ZnO nanowire arrays – Pattern generation, growth and applications, physica status solidi (b), 247 (2010) 2305-2314.
    [62] M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K.J. Choi, J.-H. Lee, S.-H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor, Appl. Phys. Lett., 93 (2008) 263103.
    [63] J. Kim, H. Jeong, J.-Y. Park, Patterned horizontal growth of ZnO nanowires on SiO2 surface, Current Applied Physics, 13 (2013) 425-429.
    [64] J.B.K. Law, J.T.L. Thong, Lateral ZnO nanowire growth on a planar substrate using a growth barrier, Nanotechnology, 18 (2007) 055601.
    [65] T.-J. Hsueh, C.-L. Hsu, S.-J. Chang, I.C. Chen, Laterally grown ZnO nanowire ethanol gas sensors, Sensor. Actuat B:Chem., 126 (2007) 473-477.
    [66] K.C. Chiang, W.-Y. Wu, J.-M. Ting, Enhanced Lateral Growth of Zinc Oxide Nanowires on Sensor Chips, Journal of the American Ceramic Society, 94 (2011) 713-716.
    [67] M.V. Akdeniz, C.N. Reid, J.V. Wood, Structures in rapidly solidified zinc, Materials Science and Engineering, 98 (1988) 321-323.
    [68] Z. Gu, M.P. Paranthaman, J. Xu, Z.W. Pan, Aligned ZnO Nanorod Arrays Grown Directly on Zinc Foils and Zinc Spheres by a Low-Temperature Oxidization Method, ACS Nano, 3 (2009) 273-278.
    [69] J. Zúñiga-Pérez, A. Rahm, C. Czekalla, J. Lenzner, M. Lorenz, M. Grundmann, Ordered growth of tilted ZnO nanowires: morphological, structural and optical characterization, Nanotechnology, 18 (2007) 195303.
    [70] H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Optical properties of single-crystalline ZnO nanowires on m-sapphire, Appl. Phys. Lett., 82 (2003) 2023-2025.
    [71] J.B. Baxter, E.S. Aydil, Epitaxial growth of ZnO nanowires on a- and c-plane sapphire, J. Cryst. Growth, 274 (2005) 407-411.
    [72] Z. Li, Y. Luan, Q. Wang, G. Zhuang, Y. Qi, Y. Wang, C. Wang, ZnO nanostructure construction on zinc foil: the concept from an ionic liquid precursor aqueous solution, Chem. Commun., (2009) 6273-6275.
    [73] T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E.A. Zhukov, T. Yao, Correlation between grain size and optical properties in zinc oxide thin films, Appl. Phys. Lett., 81 (2002) 1231-1233.
    [74] V.S. Yalishev, Y.S. Kim, X.L. Deng, B.H. Park, S.U. Yuldashev, Study of the photoluminescence emission line at 3.33 eV in ZnO films, J. Appl. Phys., 112 (2012) 013528.
    [75] Satoshi Yamauchi, Y. Imai, ZnO Heteroepitaxy on Sapphire Using a Novel Buffer Layer of Titanium Oxide: Optoelectronic Behavior, Crystal Structure Theory and Applications, 2 (2013) 100-105.
    [76] S.S. Kurbanov, T.W. Kang, Spectral behavior of the emission around 3.31 eV (A-line) from ZnO nanocrystals, J. Lumin., 130 (2010) 767-770.
    [77] T.M. Børseth, B.G. Svensson, A.Y. Kuznetsov, P. Klason, Q.X. Zhao, M. Willander, Identification of oxygen and zinc vacancy optical signals in ZnO, Appl. Phys. Lett., 89 (2006) 262112.
    [78] H.-q. Liang, L.-z. Pan, Z.-j. Liu, Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors, Mater. Lett., 62 (2008) 1797-1800.
    [79] O. Lupan, V.M. Guérin, I.M. Tiginyanu, V.V. Ursaki, L. Chow, H. Heinrich, T. Pauporté, Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells, J. Photoch. Photobio. A, 211 (2010) 65-73.
    [80] S. Song, W.-K. Hong, S.-S. Kwon, T. Lee, Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient, and vacuum environments, Appl. Phys. Lett., 92 (2008) 263109.
    [81] C.Q. Chen, J. Zhu, Bending strength and flexibility of ZnO nanowires, Appl. Phys. Lett., 90 (2007) 043105.
    [82] B.M. Wen, Y.Z. Huang, J.J. Boland, Controllable growth of ZnO nanostructures by a simple solvothermal process, J Phys Chem C, 112 (2008).
    [83] Y. Wang, Z. Liao, G. She, L. Mu, D. Chen, W. Shi, Optical modulation of persistent photoconductivity in ZnO nanowires, Appl. Phys. Lett., 98 (2011) 203108.
    [84] Y.-R. Li, C.-Y. Wan, C.-T. Chang, W.-L. Tsai, Y.-C. Huang, K.-Y. Wang, P.-Y. Yang, H.-C. Cheng, Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure, Vacuum, 118 (2015) 48-54.
    [85] C. M. García, E. D. Valdés, Ana Ma. P. Mercado, A. F. Méndez Sánchez, J. A. Andraca Adame, V. Subramaniam, J. R. Ibarra, Synthesis of Aluminum-doped Zinc Oxide Nanowires Hydrothermally Grown on Plastic Substrate, Adv. Mater. Phys. Chem., Vol.02No.04 (2012) 4.
    [86] J. Liu, W. Wu, S. Bai, Y. Qin, Synthesis of High Crystallinity ZnO Nanowire Array on Polymer Substrate and Flexible Fiber-Based Sensor, ACS Appl. Mater. Inter., 3 (2011) 4197-4200.
    [87] A. Umar, J.-P. Jeong, E.-K. Suh, Y.-B. Hahn, Synthesis of ZnO nanowires on steel alloy substrate by thermal evaporation: Growth mechanism and structural and optical properties, Korean J. Chem. Eng., 23 (2006) 860-865.
    [88] N.-D. Tam, S. Karandeep, M. Meyyappan, M.O. Michael, Vertical ZnO nanowire growth on metal substrates, Nanotechnology, 23 (2012) 194015.
    [89] W.K. Tan, K.A. Razak, K. Ibrahim, Z. Lockman, Oxidation of etched Zn foil for the formation of ZnO nanostructure, J. Alloy. Compd., 509 (2011) 6806-6811.
    [90] S. Himanshu, T. Pragya, A.K. Srivastava, P. Sanjay, S.K. Deb, Water-vapour-assisted growth of ZnO nanowires on a zinc foil and the study of the effect of synthesis parameters, Semicond. Sci. Tech., 26 (2011) 085030.
    [91] B. Reeja-Jayan, E. De la Rosa, S. Sepulveda-Guzman, R.A. Rodriguez, M.J. Yacaman, Structural Characterization and Luminescence of Porous Single Crystalline ZnO Nanodisks with Sponge-like Morphology, J. Phys. Chem C, 112 (2008) 240-246.
    [92] R. Pérez-Hernández, A. Gutiérrez-Martínez, A. Mayoral, F.L. Deepak, M.E. Fernández-García, G. Mondragón-Galicia, M. Miki, M. Jose-Yacaman, Hydrogen Production by Steam Reforming of Methanol over a Ag/ZnO One Dimensional Catalyst, Adv. Mat. Res., 132 (2010) 205-219.
    [93] R.l. Pérez-Hernández, J.J.s.V.z. Salazar, M.J.-. Yacaman, Low-Temperature Synthesis and Growth Mechanism of ZnO Nanorods on Crystalline Si Substrate, J. Nano Res., 14 (2011) 69-82.
    [94] E.D.l. Rosa, S.S. ́lveda-Guzman, B. Reeja-Jayan, P.S. A. Torres, N. Elizondo, M.J. Yacaman, Controlling the Growth and Luminescence Properties of Well-Faceted ZnO Nanorods, J. Phys. Chem. C, 111 (2007) 8489-8495.
    [95] C. Liu, Y. Masuda, Y. Wu, O. Takai, A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces, Thin Solid Films, 503 (2006) 110-114.
    [96] G. Muñoz-Hernández, A. Escobedo-Morales, U. Pal, Thermolytic Growth of ZnO Nanocrystals: Morphology Control and Optical Properties, Cryst. Growth Des., 9 (2009) 297-300.
    [97] G. Mondragon-Galicia, C. Gutierrez-Wing, M. Eufemia Fernandez-Garcia, D. Mendoza-Anaya, R. Perez-Hernandez, Ag nanowires as precursors to synthesize Ag-ZnO nanostructured brushes, RSC Advances, 5 (2015) 42568-42571.
    [98] J. Xiao, W. Zhang, Y. Wu, H. Sun, Controlled growth of ZnO torch-like nanostructure arrays, Crystal Research and Technology, 43 (2008) 634-639.
    [99] X. Liu, X. Wu, H. Cao, R.P.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, J. Appl. Phys., 95 (2004) 3141-3147.
    [100] X. Wang, C.J. Summers, Z.L. Wang, Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays, Nano Lett., 4 (2004) 423-426.
    [101] X.Y. Kong, Y. Ding, Z.L. Wang, Metal−Semiconductor Zn−ZnO Core−Shell Nanobelts and Nanotubes, J. Phys. Chem B, 108 (2004) 570-574.
    [102] D. Deng, S.T. Martin, S. Ramanathan, Synthesis and characterization of one-dimensional flat ZnO nanotower arrays as high-efficiency adsorbents for the photocatalytic remediation of water pollutants, Nanoscale, 2 (2010) 2685-2691.
    [103] C. Florica, N. Preda, A. Costas, I. Zgura, I. Enculescu, ZnO nanowires grown directly on zinc foils by thermal oxidation in air: Wetting and water adhesion properties, Mater. Lett., 170 (2016) 156-159.
    [104] S. Cho, K.-H. Lee, Solution-Based Epitaxial Growth of ZnO Nanoneedles on Single-Crystalline Zn Plates, Cryst. Growth Des., 10 (2010) 1289-1295.
    [105] G.-H. Lee, Relationship between crystal structure and photoluminescence properties of ZnO films formed by oxidation of metallic Zn, Electron. Mater. Lett., 6 (2010) 155-159.
    [106] K. Lim, M.A. Hamid, R. Shamsudin, N.H. Al-Hardan, I. Mansor, W. Chiu, Temperature-Driven Structural and Morphological Evolution of Zinc Oxide Nano-Coalesced Microstructures and Its Defect-Related Photoluminescence Properties, Materials, 9 (2016) 300.
    [107] D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett., 81 (2002) 1830-1832.
    [108] D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, P. Martin, Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO, Phys. Rev. B, 81 (2010) 115304.
    [109] E. Mosquera, J. Bernal, R.A. Zarate, F. Mendoza, R.S. Katiyar, G. Morell, Growth and electron field-emission of single-crystalline ZnO nanowires, Mater. Lett., 93 (2013) 326-329.
    [110] X. Yang, G. Du, X. Wang, J. Wang, B. Liu, Y. Zhang, D. Liu, D. Liu, H.C. Ong, S. Yang, Effect of post-thermal annealing on properties of ZnO thin film grown on c-Al2O3 by metal-organic chemical vapor deposition, J. Cryst. Growth, 252 (2003) 275-278.
    [111] B. Guo, Z.R. Qiu, K.S. Wong, Intensity dependence and transient dynamics of donor–acceptor pair recombination in ZnO thin films grown on (001) silicon, Appl. Phys. Lett., 82 (2003) 2290-2292.
    [112] Y. Chen, D.M. Bagnall, H.-j. Koh, K.-t. Park, K. Hiraga, Z. Zhu, T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization, J. Appl. Phys., 84 (1998) 3912-3918.
    [113] S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn, Appl. Phys. Lett., 75 (1999) 2761-2763.
    [114] Z. Hu, Q. Chen, Z. Li, Y. Yu, L.-M. Peng, Large-Scale and Rapid Synthesis of Ultralong ZnO Nanowire Films via Anodization, J. Phys. Chem. C, 114 (2010) 881.
    [115] L.V. Podrezova, S. Porro, V. Cauda, M. Fontana, G. Cicero, Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis, Appl. Phys. A, 113 (2013) 623-632.
    [116] Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy, Appl. Phys. Lett., 81 (2002) 3046-3048.
    [117] Z.-W. Wu, S.-L. Tyan, C.-R. Lee, T.-S. Mo, Bidirectional growth of ZnO nanowires with high optical properties directly on Zn foil, Thin Solid Films, 621 (2017) 102-107.
    [118] Z.-W. Wu, S.-L. Tyan, H.-H. Chen, J.-C.-A. Huang, C.-L. Wu, C.-R. Lee, T.-S. Mo, Photoluminescence and electrical properties of bidirectional ZnO nanowires on Zn foils via a thermal oxidation method, RSC Advances, 7 (2017) 5807-5812.
    [119] S. Cho, K.-H. Lee, Solution-Based Epitaxial Growth of ZnO Nanoneedles on Single-Crystalline Zn Plates, Cryst. Growth Des., 10 (2010) 1289.
    [120] J. Światowska-Mrowiecka, S. Zanna, K. Ogle, P. Marcus, Adsorption of 1,2-diaminoethane on ZnO thin films from p-xylene, Appl. Surf. Sci., 254 (2008) 5530-5539.
    [121] G.E. Hammer, R.M. Shemenski, The oxidation of zinc in air studied by XPS and AES, J. Vac. Sci. Technol. A, 1 (1983) 1026-1028.
    [122] B.K. Meyer, J. Sann, D.M. Hofmann, C. Neumann, A. Zeuner, Shallow donors and acceptors in ZnO, Semicond. Sci. Tech., 20 (2005) S62.
    [123] C.X. Shan, Z. Liu, S.K. Hark, Temperature dependent photoluminescence study on phosphorus doped ZnO nanowires, Appl. Phys. Lett., 92 (2008) 073103.
    [124] M. Schirra, R. Schneider, A. Reiser, G.M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C.E. Krill, K. Thonke, R. Sauer, Stacking fault related 3.31 eV luminescence at 130meV acceptors in zinc oxide, Phys. Rev. B, 77 (2008) 125215.
    [125] D. Peng, X. Chen, Y. Wang, Z. Hu, K. Yu, Z. Zhu, Temperature dependent photoluminescence properties of needle-like ZnO nanostructures deposited on carbon nanotubes, Appl. Phys. A, 105 (2011) 463-468.
    [126] Y. Bin, C. Rui, Z. Weiwei, Z. Jixuan, S. Handong, G. Hao, Y. Ting, Localized suppression of longitudinal-optical-phonon–exciton coupling in bent ZnO nanowires, Nanotechnology, 21 (2010) 445706.
    [127] V.A. Fonoberov, K.A. Alim, A.A. Balandin, F. Xiu, J. Liu, Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals, Phys. Rev. B, 73 (2006) 165317.
    [128] L. Sang Hyo, L. Jun Seok, K. Won Bae, S. Jung Inn, C. Seung Nam, K. Jong Min, P. Young Jun, H. Jin Pyo, Photoluminescence Analysis of Energy Level on Li-Doped ZnO Nanowires Grown by a Hydrothermal Method, Appl. Phys. Express, 5 (2012) 095002.
    [129] Y.R. Ryu, T.S. Lee, H.W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition, Appl. Phys. Lett., 83 (2003) 87-89.
    [130] Y.-Q. Chang, X.-H. Chen, H.-Z. Zhang, W.-J. Qiang, Y. Long, Field emission from randomly oriented ZnO nanowires, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25 (2007) 1249-1252.
    [131] W.M. Kwok, A.B. Djurišić, Y.H. Leung, W.K. Chan, D.L. Phillips, Time-resolved photoluminescence study of the stimulated emission in ZnO nanoneedles, Appl. Phys. Lett., 87 (2005) 093108.
    [132] Y.H. Leung, K.H. Tam, A.B. Djurišić, M.H. Xie, W.K. Chan, D. Lu, W.K. Ge, Zno nanoshells: Synthesis, structure, and optical properties, J. Cryst. Growth, 283 (2005) 134-140.
    [133] J.B. Baxter, E.S. Aydil, Nanowire-based dye-sensitized solar cells, Appl. Phys. Lett., 86 (2005) 053114.
    [134] S. Liu, S.-L. Liu, Y.-Z. Long, L.-Z. Liu, H.-D. Zhang, J.-C. Zhang, W.-P. Han, Y.-C. Liu, Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices, Appl. Phys. Lett., 104 (2014) 042105.
    [135] L. Maiolo, S. Mirabella, F. Maita, A. Alberti, A. Minotti, V. Strano, A. Pecora, Y. Shacham-Diamand, G. Fortunato, Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls, Appl. Phys. Lett., 105 (2014) 093501.
    [136] J.H. He, Y.H. Lin, M.E. McConney, V.V. Tsukruk, Z.L. Wang, G. Bao, Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization, J. Appl. Phys., 102 (2007) 084303.
    [137] G.M. Ali, P. Chakrabarti, Fabrication and characterization of thin film ZnO Schottky contacts based UV photodetectors: A comparative study, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 30 (2012) 031206.
    [138] Z. Shi, Y. Zhang, X. Cui, B. Wu, S. Zhuang, F. Yang, B. Zhang, G. Du, X. Yang, Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction, Appl. Phys. Lett., (2014) 131109.
    [139] F.Z. Wang, Z.Z. Ye, D.W. Ma, L.P. Zhu, F. Zhuge, Novel morphologies of ZnO nanotetrapods, Mater. Lett., 59 (2005) 560-563.
    [140] R. Shi, P. Yang, J. Wang, A. Zhang, Y. Zhu, Y. Cao, Q. Ma, Growth of flower-like ZnO via surfactant-free hydrothermal synthesis on ITO substrate at low temperature, CrystEngComm, 14 (2012) 5996-6003.
    [141] Q. Ahsanulhaq, K. Jin-Hwan, H. Yoon-Bong, Controlled selective growth of ZnO nanorod arrays and their field emission properties, Nanotechnology, 18 (2007) 485307.
    [142] Y. Huang, Y. Zhang, J. He, Y. Dai, Y. Gu, Z. Ji, C. Zhou, Fabrication and characterization of ZnO comb-like nanostructures, Ceramics International, 32 (2006) 561-566.

    無法下載圖示 校內:2022-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE