| 研究生: |
邱映菱 Chiu, Ying-Ling |
|---|---|
| 論文名稱: |
基於隨機需求與排放交易規範的閉環雙通路供應鏈之研究 Study of a Closed-Loop, Dual-Channel Supply Chain with Stochastic Demand Rates and Cap-and-Trade Regulations |
| 指導教授: |
林仁彥
Lin, Jen-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 閉環式雙通路供應鏈 、隨機需求 、定價策略 、碳排放限額與交易 、賽局理論 |
| 外文關鍵詞: | Closed-loop dual-channel supply chain, stochastic demand, pricing strategy, cap-and-trade, game theory |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷的關鍵原因之一在於溫室氣體排放過高,導致全球暖化,各國政府逐漸意識到環境污染的嚴重性,紛紛推動碳排放相關政策以達成減碳目標。隨之,許多企業開始重視回收與再製造,推動循環經濟的發展。過去的文獻大多集中於消費者使用後產品的回收,與此不同的是,本研究參考製造商的內部回收系統,專注於企業將生產過程中的邊角料或下腳料再製成新產品。本研究以此為出發點,構建不同的策略模型,假設供應鏈中包含製造商、零售商與消費者,並納入雙銷售通路、需求不確定性和碳排放限額與交易,以滿足市場需求並兼顧永續發展。
本研究運用Stackelberg 賽局理論,探討以製造商為領導者、零售商為跟隨者的雙通路供應鏈,製造商如何在隨機需求結合排放交易規範下決定最佳定價與生產量。考量到多生產雖有助於因應不穩定的需求、降低缺貨風險,卻可能導致碳排放上升,因此本研究將生產量納入決策變數,以期達到提升利潤與降低環境污染的雙重目標。本研究同時建構回收與非回收兩種策略下之定價與生產決策模型,並比較其在分散式與集中式架構中的表現。我們發現回收策略無論於何種架構下皆可提升整體利潤並降低碳排放,但是同時發現若企業回收材料的再生材料轉換率偏低、實際回收量有限或製程本身碳排放較高,回收策略可能無法發揮預期的減碳效果,因此,在推動回收策略時,企業須整體評估回收效益與製程特性,以確保策略目標的實質落實,並為實務管理提供具體參考。
One main cause of climate change is too much greenhouse gas, which leads to global warming. Governments have realized the problem and started to push carbon policies to cut emissions. In response, many companies now focus on recycling and remanufacturing, helping build a circular economy.Unlike most past studies that look at how consumers recycle used products, this study looks at how manufacturers recycle their own scraps to make new products.Based on this foundation, this study constructs two strategic models for a supply chain involving manufacturers, retailers, and consumers, integrating dual channels, stochastic demand, and cap-and-trade regulations to balance market responsiveness with environmental sustainability.
This study uses Stackelberg game theory to analyze a dual-channel supply chain, where the manufacturer is the leader and the retailer is the follower. Under random demand and cap-and-trade regulations, it examines how the manufacturer determines optimal pricing and production quantity. While increasing production can reduce the risk of stockouts, it may also raise carbon emissions. Therefore, production quantity is included as a decision variable to balance profit maximization and environmental impact minimization.
This study develops pricing and production models under recycling and non-recycling strategies, comparing their performance in both decentralized and centralized settings. Results show that recycling improves profit and reduces emissions in all cases. However, if the recycling rate is low, the volume is limited, or production is highly polluting, the benefits may not materialize. Firms should therefore assess both recycling effectiveness and production traits to ensure strategic goals are met and guide decision-making.
Apple Newsroom (2018). Apple推動創新突破的無碳煉鋁法. 取自:https://www.apple.com/tw/newsroom/2018/05/apple-paves-the-way-for-breakthrough-carbon-free-aluminum-smelting-method/.
Apple Newsroom(2023)。(2023). Apple將於2025年前達成電池使用100。取自:https://reurl.cc/qY1z5n.
Dong, C., Shen, B., Chow, P.-S., Yang, L., and Ng, C. T. (2016). Sustainability investment under cap-and-trade regulation. Annals of Operations Research, 240:509–531.
Flapper, S., van Nunen, J., and Wassenhove, van, L., editors (2005). Managing closed-loop supply chains. Springer.
Fu, R., Qiang, Q., Ke, K., and Huang, Z. (2021). Closed-loop supply chain network with interaction of forward and reverse logistics. Sustainable Production and Consumption, 27:737–752.
Harvey, F. (2018). New technology could slash carbon emissions from aluminium production: Development could transform how one of the world's most common materials is made. Retrieved November 4, 2024:https://www.theguardian.com/environment/2018/may/10/new-technology-slash-aluminium-production-carbon-emissions.
Ji, J., Zhang, Z., and Yang, L. (2017). Carbon emission reduction decisions in the retail-/dual-channel supply chain with consumers’ preference. Journal of Cleaner Production, 141:852–867.
Lee, D. (2012). Turning waste into by-product. Manufacturing & Service Operations Management, 14(1):115–127.
Lin, J.-Y., Zhou, S. X., and and, F. G. (2019). Production and technology choice under emissions regulation: Centralized vs decentralized supply chains. IISE Transactions, 51(1):57–73.
Miao, Y., Liu, L., Zhang, Y., Tan, Q., and Li, J. (2022). An overview of global power lithiumion batteries and associated critical metal recycling. Journal of Hazardous Materials, 425:127900.
Modak, N. M. and Kelle, P. (2019). Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand. European Journal of Operational Research, 272(1):147–161.
Pal, B. (2023). Investigating a closed-loop dual-channel green supply chain with stochastic demand rate and collection ratio using the distribution-free approach. Computers & Industrial Engineering, 184:109588.
Petruzzi, N. C. and Dada, M. (1999). Pricing and the newsvendor problem: A review with extensions. Operations Research, 47(2):183–194.
Rahimpour Golroudbary, S. (2020). Sustainable Recycling of Critical Materials. Phd thesis, Lappeenranta-Lahti University of Technology LUT, Lappeenranta, Finland.
Shekarian, E., Marandi, A., and Majava, J. (2021). Dual-channel remanufacturing closed-loop supply chains under carbon footprint and collection competition. Sustainable Production and Consumption, 28:1050–1075.
Sheu, J.-B. and Li, F. (2014). Market competition and greening transportation of airlines under the emission trading scheme: A case of duopoly market. Transportation Science, 48(4):684–694.
Shi, J., Zhang, G., and Lai, K. K. (2009). Supply planning for a closed loop supply chain with uncertain demand and price-dependent stochastic return. In 2009 International Conference on Business Intelligence and Financial Engineering, pages 616–620.
Stavins, R. (2008). Cap-and-trade or a carbon tax? Retrieved October 26, 2024: https://api.semanticscholar.org/CorpusID:15806635.
Sun, X., Wang, Y., Li, Y., Zhu, W., Yan, D., and Li, J. (2023). Optimal pricing and carbon emission reduction decisions for a prefabricated building closed-loop supply chain under a carbon cap-and-trade regulation and government subsidies. PLoS ONE, 18:e0287684.
Tabereaux, A. (2019). Innovations that are transforming aluminum smelting today. Light Metal Age, 77:43–47.
Wang, J. and Shao, W. (2022). Optimal decisions in the closed-loop supply chain considering capacity constraints and stochastic demand under the cap-and-trade regulation. Complexity, 2022(1):2600196.
Yang, L., Hu, Y., and Huang, L. (2020). Collecting mode selection in a remanufacturing supply chain under cap-and-trade regulation. European Journal of Operational Research, 287(2):480–496.
天下雜誌 (2023). 廢料能賺錢還能減碳 bmw、捷豹、福特都搶用的再生鋁是什麼?取自:https://www.cw.com.tw/article/5125253.
寶緯工業 (2023). 寶緯工業 2023 永續報告書。̇ 取自:https://drive.google.com/file/d/11_sChoA8tAQDRtwWnfGrGEaHB1HtDpC9/view.
廖羿雯 (2022). 不能忽視的鋁渣難題廢鋁渣流竄全台如何解?. 取 自:https://e-info.org.tw/node/234439.
循環台灣基金會(2022).鋁業閉鎖循環,打造低碳車用鋁。̇取自:https://circular-taiwan.org/case/novelis/.
永續園區政府資源整合平台 (2023). 碳權交易所來了!碳交易、碳中和、碳足跡–從市場到個人。取自:http://iwrp.muga.org.tw/news_detail.php?lcID=3&cID=10&Key=261.
環境部資源循環署(2023).111年資源循環再利用年報。取自: https://www.reca.gov.tw/smmdbapi/CirculationDownload/1/faeb0445-7ffb-447f-bc21-5b83458635a4/111%E5%B9%B4%E8%B3%87%E6%BA%90%E5%BE%AA%E7%92%B0%E5%86%8D%E5%88%A9%E7%94%A8%E5%B9%B4%E5%A0%B11205V5.1.pdf.
蘋果環境進度報告 (2024).2024年環境進度報告。取自:https://www.apple.com/environment/pdf/Apple_Environmental_Progress_Report_2024.pdf.
賴威安 (2024). 台灣鋁業的現況以及減少鋁業排放溫室氣體的方法。̇取自:https://reurl.cc/koLNdd.
鄧南(2022). 光減碳還不夠!未來的iphone se,可能都是「無碳鋁」做的。取自:https://www.businessweekly.com.tw/business/blog/3009448.
鍾榮峰 (2024). 巧新屏東廠再生鋁獲 6 家車廠採用助碳中和達標。̇取自:https://money.udn.com/money/story/5612/7907269.
校內:2030-07-24公開