簡易檢索 / 詳目顯示

研究生: 唐浩倫
Tang, Hao-lun
論文名稱: 以部落格間互動關係為基礎之部落格影響力及聲望探勘
Blog Impact and Reputation Mining by Interconnection Analysis
指導教授: 高宏宇
Kao, Hung-yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 68
中文關鍵詞: 部落格聲望部落格影響力部落格
外文關鍵詞: blog reputation, blog impact, blogs, blogosphere
相關次數: 點閱:155下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於部落格服務提供者提供的方便且簡易的發佈平台,使部落格這種新型式的網路內容成為目前流行一個網路媒體。因此,在大量的部落格裡判斷部落格的品質變成一個重要的議題。這個研究首先擷取網路上一些部落格的資料並針對各個部落格社群分析其內部的連結情形。我們相信在部落格中的互動行為展現出部落格使用者的想法及意識。藉由分析這些資訊,可以了解部落格所造成的影響力,並且也關係到其本身的品質。根據社群內部連結的結構,建立我們所定義的部落格網路模型,產生出部落格網路的實體後,從多個實驗中去研究其中不同的特性。我們提出一個簡稱BRank的方法作部落格的影響力以及聲望的探勘,用來得到部落格排名的資訊。這個方法包含了兩種排名的方式。區域性BRank (Local BRank) 針對部落格在所屬社群中的影響力作分析,而全域性BRank (Global BRank) 額外考慮了部落格在部落格世界中全域性的聲望。我們進行了一些實驗來探討部落格社群的連結結構,並發現在不同社群中,部落格的互動行為可能代表著不同的重要性。另外,不同的部落格社群的特性也會影響到部落資訊傳播的情形。將我們的部落格排名結果和人工標定的排名結果作比較後,發現可以到達一般程度的一致性,因此,我們的方法可以判斷出在社群內或是部落格世界裡有影響力的部落格。

    As the ease of use in blogs, this new form of web content has become a popular online media. Detecting the quality of blogs in the massive blogosphere is a critical issue. This study extracts some real-world blog data and analyzes the interconnection in several blog communities. We believe that the interconnections reveal the consciousness of bloggers. By analyzing this information, the impact of blogs could be derived and may refer to their qualities. We propose a blog network model which is constructed from the linking structure in the community. A ranking method called BRank is then presented for blog impact and reputation mining. The method provides two blog rankings. Local BRank analyzes the impact of blogs in a community. Global BRank additionally considers the reputation of blogs in the blogosphere. We conduct several experiments to analyze the various linking structures and discover that the importance of interactions might vary in different communities. We also find that information of blogs is spread in different ways based on the characteristics of a blog community. The comparison results with some manually ranking lists show a fair agreement on the satisfaction of human. We conclude that our method could detect high quality blogs which are influential in either a BSP community or the blogosphere.

    中文摘要 .................................................................................................................................................. IV ABSTRACT ............................................................................................................................................... V CONTENT ............................................................................................................................................... VI FIGURE LISTING ................................................................................................................................... IX TABLE LISTING .................................................................................................................................... XI 1. INTRODUCTION ............................................................................................................................ 12 1.1 Background ........................................................................................................................... 12 1.2 Motivation ............................................................................................................................. 14 1.3 Our approach ......................................................................................................................... 17 1.4 Paper structure ...................................................................................................................... 20 2. RELATED WORK ........................................................................................................................... 21 2.1 Link analysis ......................................................................................................................... 21 2.2 Blog analysis ......................................................................................................................... 21 2.3 Blog ranking .......................................................................................................................... 22 3. METHOD ........................................................................................................................................ 25 3.1 Link Analysis ........................................................................................................................ 25 3.1.1 PageRank algorithm .................................................................................................. 25 3.1.2 The proposed linking structure ................................................................................. 27 3.2 BRank .................................................................................................................................. 30 3.2.1 Interactive behaviors and blog features .................................................................... 30 3.2.2 Blog network ............................................................................................................. 32 3.2.3 Local BRank ............................................................................................................. 34 3.2.4 Global BRank ............................................................................................................ 35 3.3 Data collection ...................................................................................................................... 36 3.3.1 Crawling process ....................................................................................................... 37 3.3.2 Blog data extraction .................................................................................................. 38 3.4 Method framework ................................................................................................................ 41 4. EXPERIMENTS ............................................................................................................................... 42 4.1 Preliminary setup .................................................................................................................. 42 4.2 Evaluation measure ............................................................................................................... 43 4.2.1 Correlation coefficient .............................................................................................. 43 4.2.2 Kappa coefficient ...................................................................................................... 44 4.3 Effects of blog relationships ................................................................................................. 45 4.3.1 Statistics of blog network model ............................................................................... 45 4.3.2 Adjustments of the algorithm parameters ................................................................. 50 4.4 Ranking results ...................................................................................................................... 55 4.4.1 Global blog ranking .................................................................................................. 56 4.4.2 Wretch ....................................................................................................................... 57 4.4.3 Yahoo ........................................................................................................................ 59 4.4.4 Yam ........................................................................................................................... 60 4.4.5 Pixnet ........................................................................................................................ 61 4.4.6 Xuite .......................................................................................................................... 62 4.5 Discussions ........................................................................................................................... 64 5. CONCLUSIONS AND FUTURE WORK ....................................................................................... 66 5.1 Conclusions ........................................................................................................................... 66 5.2 Future work ........................................................................................................................... 66 6. REFERENCES ................................................................................................................................ 67

    [1] Adar, E., L. Zhang, L.A. Adamic, and R.M. Lukose, Implicit structure and the dynamics of blogspace. Workshop on the Weblogging Ecosystem, 13th International World Wide Web Conference, 2004.
    [2] Ali-Hasan, N.F. and L.A. Adamic, Expressing Social Relationships on the Blog through links and comments, in the International Conference for Weblogs and Social Media 2007: Boulder, CO.
    [3] Alvin, C. and C. Mark, A social hypertext model for finding community in blogs, in Proceedings of the seventeenth conference on Hypertext and hypermedia. 2006, ACM: Odense, Denmark.
    [4] Apostolos, K., S. Martha, and V. Iraklis, BlogRank: ranking weblogs based on connectivity and similarity features, in Proceedings of the 2nd international workshop on Advanced architectures and algorithms for internet delivery and applications. 2006, ACM: Pisa, Italy.
    [5] Arun, Q., T. Belle, and Y.C. Edward, Mining blog stories using community-based and temporal clustering, in Proceedings of the 15th ACM international conference on Information and knowledge management. 2006, ACM: Arlington, Virginia, USA.
    [6] Bonnie, A.N., J.S. Diane, G. Michelle, and S. Luke, Why we blog. Commun. ACM, 2004. 47(12): p. 41-46.
    [7] Fujimura, K., T. Inoue, and M. Sugisaki, The EigenRumor Algorithm for Ranking Blogs. WWW2005 Workshop on the Weblogging Ecosystem, 2005.
    [8] Furukawa, T., Y. Matsuo, I. Ohmukai, K. Uchiyama, and M. Ishizuka, Social Networks and Reading Behavior in Blogosphere, in the International Conference for Weblogs and Social Media. 2007.
    [9] Gill, K., How can we measure the influence of the blogosphere?, in the Workshop on the Weblogging Ecosystem at the 13th International World Wide Web Conference. 2004: New York.
    [10] Jon, M.K., Authoritative sources in a hyperlinked environment. J. ACM, 1999. 46(5): p. 604-632.
    [11] Lento, T., H. Welser, L. Gu, and M. Smith, The Ties that Blog: examining the Relationship Between Social Ties and Continued Participation in the Wallop Weblogging System, in 3rd annual workshop on the Weblogging Ecosystem at the World Wide Web Conference. 2006: Edimburgh.
    [12] Mohammad, A.T., S.M. Hashemi, and M. Ali, B2Rank: An Algorithm for Ranking Blogs Based on Behavioral Features, in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. 2007, IEEE Computer Society.
    [13] Nakajima, S., J. Tatemura, Y. Hara, K. Tanaka, and S. Uemura, Identifying agitators as important blogger based on analyzing blog threads. Frontiers of Www Research and Development - Apweb 2006, Proceedings, 2006. 3841: p. 285-296.
    [14] Nitin, A., L. Huan, T. Lei, and S.Y. Philip, Identifying the influential bloggers in a community, in Proceedings of the international conference on Web search and web data mining. 2008, ACM: Palo Alto, California, USA.
    [15] Page, L., S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking: Bringing order to the web. 1998, Technical report, Stanford Digital Library Technologies Project, 1998.
    [16] Tapanee, T., E. Cleo, and S. Eleni, Taking the community's pulse: one blog at a time, in Proceedings of the 6th international conference on Web engineering. 2006, ACM: Palo Alto, California, USA.
    [17] Xiaochuan, N., X. Gui-Rong, L. Xiao, Y. Yong, and Y. Qiang, Exploring in the weblog space by detecting informative and affective articles, in Proceedings of the 16th international conference on World Wide Web. 2007, ACM: Banff, Alberta, Canada.
    [18] Yupeng, F., X. Rongjing, L. Yiqun, Z. Min, and M. Shaoping, Finding Experts Using Social Network Analysis, in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. 2007, IEEE Computer Society.

    下載圖示
    2009-08-25公開
    QR CODE