簡易檢索 / 詳目顯示

研究生: 陳緯霖
Chen, Wei-Lin
論文名稱: 有效利用瀏覽歷程以支援探索式網頁搜尋
Exploiting Browsing History for Supporting Exploratory Search
指導教授: 鄧維光
Teng, Wei-Guang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 49
中文關鍵詞: 人機互動介面探索式網頁搜尋時間軸利用
外文關鍵詞: timeline, interactive interface, exploratory search
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著資訊科技的蓬勃發展,使用搜尋引擎來尋找資料是一般網路使用者極為熟悉的動作。當使用者在進行探索式網頁搜尋時,由於搜尋目標是使用者本身不熟悉的領域,使用者往往會在瀏覽搜尋結果與改變搜尋關鍵字的步驟間不斷重複,以獲得更進一步的資訊。在此過程中,使用者將面對超過人腦短期記憶所能負荷的大量資訊,然而目前大眾所使用的搜尋記錄系統,僅記錄了瀏覽時間與網頁超連結,而缺乏統整性。當使用者回顧其先前的瀏覽記錄時,往往難以找到所需的資訊,遑論從中分析出有價值的知識。如果能有合適的方式來統整、記錄這些資料,將有助於減輕使用者的負擔。為了輔助使用者回顧網頁瀏覽記錄,我們設計了兩種互動性的瀏覽模式:時間軸模式與關聯性模式。在時間軸模式下,各程序依照時間排列,並以不同的時間刻度來表示程序的重要性;相較於一般使用相同刻度的記錄方式,利用不同時間刻度來呈現能更加凸顯搜尋紀錄間重要程度的不同。在關聯性模式下,瀏覽記錄將被分析,並以動態的方式呈現其關聯性;使用者的瀏覽行為將影響搜尋記錄間的關聯性,系統所呈現的資料將更符合各種使用者不同的需求。藉由分析與統整使用者瀏覽記錄,我們提出之研究方法與實作完成之系統將能更順利地協助使用者回顧過去的搜尋歷程,以進行更深入的思索與分析,並從中獲得有價值的知識。

    With the advance of information technologies, web search has become a necessary activity for most Internet users. Although current search engines are powerful enough to respond required search results in seconds, information seekers may still feel arduous to digest them when conducting the exploratory search. In other words, when users are unfamiliar with the domain of their goals or unsure about the ways to achieve their goals, they may need to read numerous pages before fully understand what they are searching for. Note that it is more feasible for users if their browsed information can be properly analyzed and organized. In this work, we thus propose to fully exploit the browsing history to help users clarify their thoughts and discover new insights during the process of exploratory search. Specifically, interactive user interfaces of two different modes, i.e., the timeline mode and the relevance mode, are devised to provide users a vivid impression of their browsing history. In the timeline mode, the temporal granularities are adjusted according to the timestamps of search sessions. This helps users to perceive the time distance among sessions in a much easier way. Moreover, in the relevance mode, the search sessions are displayed on a diagram which is like a guide map for users to clearly identify the relationships. Empirical studies on a prototype system show that our approach is feasible for users to retrospect their browsing history so as to obtain more valuable knowledge.

    Chapter 1 Introduction 1 1.1 Motivation and Overview 1 1.2 Contributions of the Thesis 3 Chapter 2 Preliminaries 4 2.1 User Goals in Web Search 4 2.2 User Behavior in Exploratory Search 7 2.3 Improving Techniques for Exploratory Search 8 2.3.1 Personalized Web Search 8 2.3.2 Usage of Browsing Logs 9 2.4 Information Visualization 11 2.4.1 Guidelines of Information Visualization 11 2.4.2 Visualized Search Engines 12 2.4.3 Visualization of Temporal Data 15 Chapter 3 Exploiting Explicit and Implicit Information for Exploratory Search 18 3.1 Predicaments in the Search Process 18 3.2 Problems of Current Timeline Approaches 21 3.3 Usage of Timeline and Temporal Granularities 24 3.4 Discovering Relevance among Search Sessions 25 Chapter 4 Prototyping and Evaluation of Proposed Scheme for Exploratory Search 28 4.1 Implementation of Our Concepts 28 4.1.1 Timeline Mode 29 4.1.2 Relevance Mode 32 4.2 Evaluation Results 34 4.3 Extensive Discussions 38 Chapter 5 Conclusions and Future Works 41 Bibliography 43

    [1] W. Aigner, A. Bertone, S. Miksch, C. Tominski and H. Schumann, “Towards a Conceptual Framework for Visual Analytics of Time and Time-Oriented Data,” Proceedings of the 39th Conference on Winter Simulation, pages 721-729, December 2007.
    [2] O. Alonso, R. Baeza-Yates and M. Gertz, “Exploratory Search Using Timelines,” Proceeding of the 25th Annual SIGCHI Conference on Human Factors in Computing Systems, pages 23-26, April 2007.
    [3] O. Alonso, M. Gertz and R. Baeza-Yates, “On the Value of Temporal Information in Information Retrieval,” ACM SIGIR Forum, 41(2): 35-41, December 2007.
    [4] M. J. Bates, “The Design of Browsing and Berrypicking Techniques for the Online Search Interface,” Online Information Review, 13(5): 407-424, 1989.
    [5] BBC - History, http://www.bbc.co.uk/history/interactive/timelines/british/index.shtml.
    [6] R. Botafogo, E. Rivlin and B. Shneiderman, “Structural Analysis of Hypertexts: Identifying Hierarchies and Useful Metrics,” ACM Transactions on Information Systems, 10(2): 142-180, April 1992.
    [7] A. Broder, “A Taxonomy of Web Search,” SIGIR Forum, 36(2): 3-10, June 2002.
    [8] Buzan Centre Australia / NZ, http://www.buzan.com.au/.
    [9] T.-W. Chen, P.-L. Chang and W.-G. Teng, “Supporting Informational Web Search with Interactive Explorations,” Proceedings the 4th International Conference on Signal Image Technology and Internet Based Systems, pages 153-160, November 2008.
    [10] Clusty Clustering Search Engine, http://clusty.com/.
    [11] H. Cui, J.-R. Wen, J.-Y. Nie and W.-Y. Ma, “Probabilistic Query Expansion Using Query Logs,” Proceedings of the 11th International Conference on World Wide Web, pages 325-332, May 2002.
    [12] M. Dörk, “VisGets: Coordinated Visualizations for Web-Based Information Exploration and Discovery,” IEEE Transactions on Visualization and Computer Graphics, 14(6): 1205-1212, November 2008.
    [13] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan and A. Tomkins, “Visualizing Tags over Time,” Proceedings of the 15th International Conference on World Wide Web, pages 193-202, May 2006.
    [14] P. Farrand, F. Hussain and E. Hennessy, “The Efficacy of the 'Mind Map' Study Technique,” Journal of Medical Education, 36(5): 426-431, May 2002.
    [15] X. Fu, J. Budzik and K. Hammond, “Mining Navigation History for Recommendation,” Proceedings of the 5th International Conference on Intelligent User Interfaces, pages 106-112, December 2000.
    [16] Google AJAX Search API, http://code.google.com/intl/zh-TW/apis/ajaxsearch/web.html/.
    [17] Google news timeline, http://newstimeline.googlelabs.com/.
    [18] Google Web History, http://www.google.com/searchhistory/.
    [19] Grokker, http://live.grokker.com/.
    [20] JavaScript Object Notation (JSON), http://www.json.org/.
    [21] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski and G. Gay, “Evaluating the Accuracy of Implicit Feedback from Clicks and Query Reformulations in Web Search,” ACM Transactions on Information Systems, 25(2) , April 2007.
    [22] KartOO, http://www.kartoo.com/.
    [23] D. A. Keim, F. Mansmann, J. Schneidewind and H. Ziegler, “Challenges in Visual Data Analysis,” Proceedings of the 10th International Conference on Information Visualization, pages 9-16, July 2006.
    [24] A. Komlodi, “Search Histories for User Support in User Interfaces,” Journal of the American Society for Information Science and Technology, 57(6):803-807, February 2006.
    [25] J. Lai and B. Soh, “Personalized Web Search Results with Profile Comparisons,” Proceedings of the 3rd International Conference on Information Technology and Applications, vol. 1, pages 573-576, July 2005.
    [26] U. Lee, Z. Liu and J. Cho, ”Automatic Identification of User Goals in Web Search,” Proceedings of the 14th International Conference on World Wide Web, pages 391-400, May 2005.
    [27] G. Marchionini, “Exploratory Search: from Finding to Understanding,” Communications of the ACM, 49(4):41-46, April 2006.
    [28] Mooter Clustering Search Engine, http://www.mooter.com/.
    [29] W. Müller and H. Schumann, “Visualization Methods for Time-Dependent Data - an Overview,” Proceedings of the 2003 Winter Simulation Conference, vol. 1, pages 737-745, December 2003.
    [30] H. Park, S.-H. Myaeng, G. Jang, J.-W. Choi, S. Jo and H.-C. Roh, “An Interactive Information Seeking Interface for Exploratory Search,” Proceedings of the 10th International Conference on Enterprise Information Systems, pages 276-285, June 2008.
    [31] PHP/Math Project, http://www.phpmath.com/.
    [32] J. Pitkow, H. Schütze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds, E. Adar and T. Breuel, “Personalized Search: A Contextual Computing Approach May Prove a Breakthrough in Personalized Search Efficiency,” Communications of the ACM, 45(9):50-55, September 2002.
    [33] Plurk, http://www.plurk.com/.
    [34] Prefuse - Interactive Information Visualization Toolkit, http://prefuse.org/.
    [35] F. Qiu and J. Cho, “Automatic Identification of User Interest for Personalized Search,” Proceedings of the 15th International Conference on World Wide Web, pages 727-736, May 2006.
    [36] M. Ringel, E. Cutrell, S. Dumais and E. Horvitz, “Milestones in Time: The Value of Landmarks in Retrieving information from Personal Stores,” Proceedings of the IFIP TC13 International Conference on Human-Computer Interaction, pages 184-191, September 2003.
    [37] E. Rivlin, R. Botafogo and B. Shneiderman, “Navigating in Hyperspace: Designing a Structure-based Toolbox,” Communications of the ACM, 37(2):87-96, February 1994.
    [38] D. E. Rose and D. Levinson, “Understanding User Goals in Web Search,” Proceedings of the 13th International Conference on World Wide Web, pages 13-19, May 2004.
    [39] Simple Chinese Words Segmentation (SCWS), http://www.ftphp.com/scws.
    [40] X. Shen, B. Tan and C. Zhai, “UCAIR: Capturing and Exploiting Context for Personalized Search,” Proceedings of the Information Retrieval in Context Workshop, August 2005.
    [41] B. Shneiderman, “The Eyes Have It: a Task by Data Type Taxonomy for Information Visualizations,” Visual Languages, September 1996.
    [42] A. Sieg, B. Mobasher and R. Burke, “Representing Context in Web Search with Ontological User Profiles,” Modeling and Using Context, pages 439-452, 2007.
    [43] SIMILE Timeline Toolkit, http://simile.mit.edu/timeline/.
    [44] SnakeT Clustering Search Engine, http://snaket.di.unipi.it/.
    [45] Stanford POS Tagger, http://nlp.stanford.edu/software/tagger.shtml
    [46] SUMI User Satisfaction Questionnaire, http://sumi.ucc.ie/.
    [47] Timetoast, http://www.timetoast.com/.
    [48] O. Turetken and R. Sharda, “Visualization of Web Spaces: State of the Art and Future Directions,” ACM SIGMIS Database, 38(3):51-81, August 2007.
    [49] J.-R. Wen, J.-Y. Nie and H.-J. Zhang, “Clustering User Queries of a Search Engine,” Proceedings of the 10th International World Wide Web Conference, pages 162-168, May 2001.
    [50] R. W. White and S. M. Drucker, “Investigating Behavioral Variability in Web Search,” Proceedings of the 16th International Conference on World Wide Web, pages 21-30, April 2007.
    [51] R. W. White, B. Kules, S. Drucker and Schraefel, “Supporting Exploratory Search,” Communications of the ACM, 49(4):36-39, April 2006.
    [52] P. J. Wild, P. Johnson, C. Roast and M. Czerwinski, “The Temporal Aspects of Work for HCI,” Proceeding of the 22nd Annual SIGCHI Conference on Human Factors in Computing Systems, pages 1735-1736, April 2004.
    [53] T. Wilson, “Human Information Behavior,” Informing Science the International Journal of an Emerging Transdiscipline, 3(2):49-56, June 2000.
    [54] Y. Xu, K. Wang, B. Zhang and Z. Chen, “Privacy-Enhancing Personalized Web Search,” Proceedings of the 16th International Conference on World Wide Web, pages 591-600, May 2007.

    下載圖示 校內:2011-09-07公開
    校外:2011-09-07公開
    QR CODE