| 研究生: |
賴進宏 Lai, Chin-Hung |
|---|---|
| 論文名稱: |
批次共沸蒸餾程序之最適化設計 Optimal Design of Batch Azeotropic Distillation Processes |
| 指導教授: |
張玨庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 批次製程 、共沸蒸餾 、最適流程 、最適排程 |
| 外文關鍵詞: | Batch Process, Azeotropic Distillation, Optimal Scheduling, Optimal Flowsheet |
| 相關次數: | 點閱:67 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中我們整合了流程及排程最適化的考慮,開發出批次共沸蒸餾系統之設計方法。此一方法可分兩個階段:首先以整數規劃(IP)模式求取可分離共沸混合物的最適化流程,再利用混整數線性規劃(MILP)模式搜尋出最適化排程。在本論文中我們以一系列案例展示上述模式之使用步驟,從計算結果可以看出,流程安排的確顯著影響了批次排程之操作績效,因此也間接驗證了本研究提出之整合設計方式的必要性。
By addressing both flowsheeting and scheduling issues, an integrated design method for the batch azeotropic distillation systems has been developed in this work. The design method can be applied in two stages. First, the optimal flowsheet (state-task network, STN) is synthesized with an integer program (IP). A mixed integer linear programming (MILP) model is then constructed accordingly for generating the optimal schedule. The implementation procedure of the proposed design approach is demonstrated with a series of case studies in this thesis. From the numerical results obtained in various examples, it can be clearly observed that the performance of a batch azeotropic distillation process can be greatly affected by the STN structure. Consequently, the importance of the proposed integrated design approach can be confirmed indirectly.
1. Adjiman, C. S., Androulakis, I. P., and Floudas, C. A., 1997, “Global Optimization of MINLP Problems in Process Synthesis and Design”, Comp. Chem. Eng., Vol 21, 445-450.
2. Biegler, L. T., Grossmann, E. I., and Westerberg, A. W., Systematic Methods of Chemical Process Design; Prentice Hall, New Jersey, 1997.
3. Brooke, A., Kendrick, D., Meeraus, A., and Raman, R., GAMS -A User’s Guide; Washington, DC, 1998.
4. Brooke, A., Kendrick, D., Meeraus, A., and Raman, R., GAMS –The Solver Manuals; Washington, DC, 2001.
5. Doherty, M. F., and Malone, M. F., Conceptual Design of Distillation Systems; McGraw-Hill, New York, 2001.
6. Feng, G., Fan, L. T., Friedler, F., and Seib, P. A., “Identifying Operating Units for the Design and Synthesis of Azeotropic-Distillation Systems”, Ind.
Eng. Chem. Res., 2000, 39, 175-184.
7. Friedler, F., Tarjan, K., Huang, Y. W., and Fan, F. T., “Graph-Theoretic Approach to Process Synthesis: Axioms and Theorems”, Chem. Eng. Sci., Vol. 47, No. 8, pp. 1973-1988, 1992.
8. Friedler, F., Tarjan, K., Huang, Y. W., and Fan, F. T., “Graph-Theoretic Approach to Process Synthesis: Polynomial Algorithm for Maximal Structure Generation”, Comp. Chem. Eng., Vol 17, No. 9, pp. 929-942, 1993.
9. Friedler, F., Varga, J. B., and Fan, F. T., “Decision-Mapping: A Tool for Consistent and Complete Decision in Process Synthesis”, Chem. Eng. Sci., Vol. 50, No. 11, pp. 1755-1768, 1995.
10. Ierapetritou, M. G., and Flouds, C. A., “Effective Continuous-Time Formulation for Short-Term Scheduling. 1. Multipurpose Batch Processes”, Ind. Eng. Chem. Res, 1998, 37, 4341-4359.
11. Ierapetritou, M. G., and Flouds, C. A., “Effective Continuous-Time Formulation for Short-Term Scheduling. 2. Continuous and Semi- continuous Processes”, Ind. Eng. Chem. Res, 1998, 37, 4360-4374.
12. Kim, J., and Moon, I., “Synthesis of Safe Operating Procedure for Multipurpose Batch Processes Using SMV”, Comp. Chem. Eng. 2000, 24, 385-392.
13. Kondili, E., Pantelides, C. C., and Sargent, R., “A General Algorithm for Short-Term Scheduling of Batch Operations - I. MILP Formulation”, Comp. Chem. Eng. 1993, 17,211.
14. Morari, M., and Grossmann, I. E., Chemical Engineering Optimization Models with GAMS; CACHE Process Design Case Studies, 1991
15. Pagageorgaki, S., and Reklaitis, G. V., 1990, “Optimal Design of Multipurpose Batch Plants – 1. Problem Formulation”, Ind. Eng. Chem. Res. 29(10), 2054.
16. Raman, R., and Grossmann, I. E., 1991, “Relation Between MILP Modeling and Logical Inference for Chemical Process Synthesis”, Comp. Chem. Eng., 15(2), 73-84.
17. Raman, R., and Grossmann, I. E., 1993, “Symbolic Integration of Logic in Mixed-Integer Linear Programming Techniques for Process Synthesis”, Comp. Chem. Eng. 13, 909-927.
18. Schweitzer, P. A., Handbook of Separation Techniques for Chemical Engineering; McGraw-Hill, New York, 1997.
19. Shah, N., Pantelides, C. C., and Sargent, R., “A General Algorithm for Short-Term Scheduling of Batch Operations – II. Computational Issues.”, Comp. Chem. Eng. 1993, 17, 229.
20. Stichlmair, J. G., Fair, J. R., and Bravo, J. L., “Separation of Azeotropic Mixtures via Enhanced Distillation”, Chem. Eng. Prog., 43, 63-69 (Jan. 1989)
21. Stichlmair, J. G., and Herguijuela, J. R., “Separation Regions and Processes of Zeotropic and Azeotropic Ternary Distillation”, AIChE J. 1992, 38, 1523-1535.