簡易檢索 / 詳目顯示

研究生: 雷詠妮
RAJESH, AJANI KAJAL
論文名稱: 以非線性有限元素法估測奈米錐之機械與熱性質
Estimation of Mechanical and Thermal Properties of Nanocone by using nonlinear Finite Element Method
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 68
外文關鍵詞: Carbon Nanotubes, Carbon Nanocones, Molecular Mechanics, Finite Element Method, Mechanical Properties, Thermal Properties
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, mechanical and thermal properties of carbon-based nanostructures such as carbon nanotubes and carbon nanocones are investigated by using a molecular mechanics based 3D finite element (FE) analysis. The proposed molecular mechanics based finite element approach links the molecular mechanics and structural mechanics, and is based on simulating the covalent bonds between carbon-carbon atoms with Timoshenko beam elements. The harmonic and modified Morse molecular mechanics potential functions are used for small and large deformation problems. Mechanical properties (Young’s modulus, shear modulus, Poisson’s ratio, and ultimate strength), and thermal properties (Coefficient of thermal expansion and specific heat) of carbon nanotubes, and carbon nanocones are investigated by using molecular mechanics based finite element approach. It is shown that the tube diameter, length, and chirality affects the mentioned properties and for nanocone, different apex angles, cone length and top radius affects the mentioned properties.

    ABSTRACT i TABLE OF CONTENTS iii LIST OF TABLES vi LIST OF FIGURES vii NOMENCLATURE x CHAPTER 1 INTRODUCTION 1 1.1 Problem statement 1 1.2 literature review 1 1.3 Structure of thesis 5 CHAPTER 2 ATOMIC STRUCTURES OF CARBON NANOTUBES AND CARBON NANOCONES 6 2.1 Carbon nanotube structures 6 2.2 Carbon nanocone structures 8 CHAPTER 3 FINITE ELEMENT MODELLING 12 3.1 Linear beam element with harmonic potential 12 3.2 Nonlinear beam element with modified Morse potential 14 CHAPTER 4 FORMULATION AND IMPLEMENTATION 17 4.1 Mechanical properties of CNCs 17 4.1.1 Expression of young’s modulus 17 4.1.2 Expression of shear modulus 19 4.1.3 Expression of Poisson’s ratio 20 4.1.4 Expression of Strength 21 4.2 Thermal properties of CNCs 21 4.2.1 Expression of coefficient of thermal expansion 22 4.2.2 Expression of specific heat 25 4.2.3 Application of FEM to get natural frequency 26 4.3 Implementation in ANSYS 28 4.3.1 Young’s modulus 28 4.3.2 Shear modulus 29 4.3.3 Poisson’s ratio 30 4.3.4 Strength 30 4.3.5 Simulation steps 30 CHAPTER 5 RESULTS & DISCUSSIONS 32 5.1 Mechanical properties of carbon nanotubes 32 5.1.1 Young’s Modulus 32 5.1.2 Shear Modulus 35 5.1.3 Poisson’s Ratio 36 5.1.4 Ultimate strength 37 5.2 Thermal properties of carbon nanotubes 38 5.2.1 Coefficient of thermal expansion 38 5.2.2 Specific heat 43 5.3 Mechanical properties of carbon nanocones 44 5.3.1 Young’s modulus and shear modulus 44 5.3.2 Poisson’s Ratio 50 5.3.3 Ultimate strength 50 5.4 Thermal properties of carbon nanocones 52 5.4.1 Coefficient of thermal expansion 52 5.4.2 Specific heat 59 CHAPTER 6 CONCLUSIONS 62 REFERENCES 65

    [1] S. Iijima’s., 1991. “Helical microtubules of graphitic carbon”, Nature, 354, 56-58.
    [2] C.F. Cornwell, L.T. Wille., 1997, “Elastic properties of single –walled carbon nanotubes in compression”, Solid State Communications, 101, 555–558.
    [3] S. Ogata, Y. Shibutani., 2003, “Ideal tensile strength and band gap of single walled carbon nanotubes”, Physical Review B 68,165409.
    [4] K.M. Liew, C.H. Wong, X.Q. He, M.J. Tan, S.A. Meguid., 2004, “Nano mechanics of single and multiwalled carbon nanotubes”, Physical Review B 69,115429.
    [5] C.M. Wang, V.B.C. Tan, Y.Y. Zhang., 2006, “Timoshenko beam model for vibrational analysis of multi-walled carbon nanotubes”, Journal of sound and vibration, 294, 1060-1072.
    [6] A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen., 1997, “Graphitic cones and the nucleation of curved carbon surfaces”, Nature, 388, 451-454.
    [7] L. Bourgeois, Y. Bando, W.Q. Han, T. Sato., 2000, “Structure of boron nitride Nano scale cones: Ordered stacking of 2400 and 3000 disclinations”, Physical Review B 61 7686–7691.
    [8] J.C. Charlier, J.M. Rignanese., 2001, “Electronic Structure of Carbon Nano cones”, Physical Review Letters. 86, 5970–5973.
    [9] M.H. Ge, K. Sattler, Chem., 1994, “Observation of fullerene cones”, Physical Review Letters, 220, 192-196.
    [10] O.A. Shenderova, B.L. Lawson, D. Areshkin, D.W. Brenner., 2001, “Predicated structure and electronic properties of individual carbon Nanocones and Nanostructures assembled from Nano cones”, Nanotechnology, 12, 191–197.
    [11] C.M. Yeh, M.Y. Chen, J. Hwang, J.-Y. Gan, C.S. Kou., 2006, “Field emission from a composite structure consisting of vertically aligned single-walled carbon Nanotubes and carbon Nanocones”, Nanotechnology, 17, 5930–5934.
    [12] S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Takahashi.,1999, “Nano-aggregates of single –walled graphitic carbon Nano-horns”, Chemical Physics Letters, 309 , 165–170.
    [13] D.J. Klein., 2002, “Topo-combinatoric categorization of quasi-local graphitic defects”, Chemical Physics, 4, 2099–2110.
    [14] B. Eksioglu, A. Nadarajah., 2006, “Structural analysis of conical carbon nanfibers”, Carbon, 44, 360–373.
    [15] S. Naess, A. Elgsaeter, G. Helgesen, K. Knudsen., 2009, “Carbon Nanocones: wall structure and morphology”, Science and Technology of Advanced Materials, 10, 065002.
    [16] C.Y. Wei, D. Srivastava., 2004, “Nano mechanics of carbon Nanofibers: Structural and elastic properties”, Applied Physics Letters, 85, 2208–2210.
    [17] J.X.Wei., K.M.Liew., and X.Q.He., 2007, “Mechanical properties of carbon Nanocones”, Applied Physics Letters, 91, 261906.
    [18] R.D. Firouz-Abadi, M. Fotouhi, H. Haddadpour., 2011, “Free vibrational analysis of Nanocones using a nonlocal continuum model”, Physics Letters A, 375, 3593–3598.
    [19] R.D. Firouz-Abadi, M. Fotouhi, H. Haddadpour., 2012, “Stability analysis of Nanocones under external pressure and axial compression using a nonlocal shell model”,Physica E ,44, 1832–1837.
    [20] K.B. Mustapha, Z.W. Zhong., 2012, “Stability of single walled carbon nanotubes and carbon Nanocones under self –weight and an axial tip force”, International Journal of Engineering Science, 50 ,268–278.
    [21] P.C.Tsai, and T.H .Fang. 2007, “A molecular dynamics study of the nucleation, thermal stability and Nanomechanics of Carbon Nanocones”, Nanotechnology, 18, 105702.
    [22] J.W. Yan, K.M. Liew, L.H. He., 2012, “Predicting mechanical properties of single walled carbon Nanocones using a higher order gradient continuum computational framework”, Composite Structure,94, 3271–3277.
    [23] A. Pantano, D.M. Parks, M.C. Boyce., 2004, “Mechanics of deformation of single and multi-wall carbon nanotubes”, Journal of the Mechanics and Physics of Solids, 52, 789–821.
    [24] K.I. Tserpes, P. Papanikos., 2005, “Finite element modeling of single-walled carbon nanotubes”, Composites Part B, 36, 468–477.
    [25] G.I. Giannopoulos, P.A. Kakavas, N.K. Anifantis., 2008, “Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach”, Computational Materials Science,41, 561–569.
    [26] G. Yun, H.S. Park., 2008, “A finite element formulation for Nanoscale resonant mass sensing using the surface Cauchy–Born model”, Journal Computer Methods in Applied Mechanics and Engineering, 197, 3324–3336.
    [27] E. Mahmoudinezhad, R. Ansari, A. Basti, M. Hemmatnezhad., 2012, “An accurate spring-mass model for predicting mechanical properties of single-walled carbon nanotubes”, Computational Materials Science, 62, 6–11.
    [28] E. Mahmoudinezhad, R. Ansari., 2013, “Vibration analysis of circular and square single-layered graphene sheets: An accurate spring mass model”, Physica E, 47, 12–16.
    [29] E. Mahmoudinezhad, R. Ansari, A. Basti, M. Hemmatnezhad., 2014, “An accurate spring-mass finite element model for vibration analysis of single-walled carbon nanotubes”, Computational Materials Science, 85, 121–126.
    [30] Lee, J.H. and Lee, B.S., 2012, “Modal analysis of Carbon Nanotubes and Nano- cones using FEM, Computational Materials Science, 51, 30-42.
    [31] M.M.S. Fakhrabadi, N. Khani, R. Omidvar, A. Rastgoo, Comput., 2012, “Investigation of elastic and buckling properties of carbon Nanocones using molecular mechanics approach ” ,Computational Materials Science,61, 248–256.
    [32] C. Li, and T.W .Chou., 2005, “Axial and radial thermal expansions of single-walled carbon nanotubes”, Physical review B, 71, 235414.
    [33] C. Li, and T.W .Chou. 2003, “A structural mechanics approach for the analysis of carbon nanotubes”, International Journal Solids Structures, 40, 2487–2499.
    [34] F. Scarpa., S .Adhikari, and A.S. Phani., 2009, “Effective elastic mechanical properties of single layer graphene sheets”, Nanotechnology, 20, 065709.
    [35] N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, and P. M. Ajayan.,2002, “Temperature dependence of radial breathing mode Raman frequency of single –walled carbon nanotubes”, Physical Review B, 66, 235424.
    [36] H. Jiang, B. Liu, and Y. Huang., 2004, “Thermal expansion of single wall carbon Nanotubes”, Engineering Material Technology, 126, 265.
    [37]. P. K. Schelling and P. Keblinski., 2003, “Thermal Expansion of Carbon Structures”, Physical Review B, 68, 035425.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE